Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

An army contingent of 104 members is to march behind an army band, of 96 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march ?

Answer»

Let the number of columns be x.

x is the largest number, which should divide both 104 and 96 

104 = 96 x 1 + 8 

96 = 8 x 12 + 0 

.'.     HCF of 104 and 96 is 8

Hence, 8 columns are required.

352.

Find the maximum number of students among whom 1001 pens and 910 pencils can be distributed in such a way that each student gets the same number of pens and the same number of pencils.

Answer»

Total number of pens = 1001 

Total number pencils = 910 

∴ Maximum number of students who get the same number of pens and pencils = HCF (1001, 910) 

Prime factorization: 

1001 = 11 × 91 

910 = 10 × 91 

∴ HCF = 91 

Hence, 91 students receive same number of pens and pencils.

353.

Find the maximum number of students among whom 1001 pens and 910 pencils can be distributed in such a way that each student gets the same number of pens and the same number of pencils.

Answer»

Given:

Total number of pens = 1001

Total number pencils = 910

Maximum number of students who get the same number of pens and the same number of pencils = HCF (1001 and 910)

Using prime factorization:

910 = 2 x 5 x 7 x 13

1001 = 7x 11 x 13

Now, HCF(1001 and 910) = 91

Answer: 91 students get same number of pens and pencils.

354.

Is 0.3 the multiplication inverse of 3 1/3 ? why or why not ?

Answer»

3 1/3 = 10/3

0.3 = 3/10

a * 1/a =1

then 1/a is multiplicative inverse of a

0.3* 3 1/3 = 3/10 * 10/3 =1

therefore 0.3 is multiplicative inverse of 3 1/3

355.

Use Euclid’s division algorithm to find the HCF of 184, 230 and 276.

Answer»

Let’s first choose 184 and 230 to find the HCF by using Euclid’s division lemma. 

Thus, we obtain 

230 = 184 x 1 + 46 

Since the remainder 46 ≠ 0. So we apply the division lemma to the divisor 184 and remainder 46. We get, 

184 = 46 x 4 + 0 

The remainder at this stage is 0, the divisor will be the HCF i.e., 46 for 184 and 230. 

Now, we again use Euclid’s division lemma to find the HCF of 46 and 276. And we get, 

276 = 46 x 6 + 0 

So, this stage has remainder 0. Thus, the HCF of the third number 276 and 46 is 46. 

Hence, the HCF of 184, 230 and 276 is 46.

356.

Explain with an example how irrational numbers differ from rational numbers ?

Answer»

Irrational numbers can’t be expressed in p/q form where p and q are integers and q ≠ 0.

E.g. √2, √3; √5, √7 etc.

Where as a rational can be expressed in p/q form

E.g. :- -3 = -3/1 and 5/4 etc.

357.

Write any three rational numbers.

Answer»

3/4, 5/9, 2/7

358.

Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.

Answer»

Let ‘a’ and ‘b’ are positive integers, 

a = b × q + r 

Let b = 3. 

∴ a = 3q + r 

(i) If r = 0 then a = 3q 

(ii) If r = l then a = 3q + 1 

(iii) If r = 2 then a = 3q + 2 

If we consider cubes of these, 

(i) If a = 3q, then 

a3 = (3)3 = 27q3 = 9(3q)3 = 9m (∵ m = 3q2

(ii) If a = 3q + 1, then (a)3 = (3q + 1)3 

= 27q3 + 1 + 27q3 + 9q 

= 9(3q3 + 3q2 + q) + 1 

= 9m + 1 

(∵ m = 3q3+ 3q2 + q) 

iii) If a = 3q + 2, then 

(a)3 = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 

= 9(3q3 + 6q2 + 4q) + 8 

= 9m + 8 

∴ Cube of any positive integer is of the form 9m, 9m + 1, 9m + 8.

359.

Value of  \(0.\overline{3}\) ....................A) 3/8B) 2/9C) 3/7D) 1/3

Answer»

Correct option is (D) 1/3

Let x = \(0.\bar{3}\)

i.e., x = 0.333 ..... _________(1)

Multiply equation (1) by 10, we get

10x = 3.333 .....    _________(2)

Subtract equation (1) from (2), we get

9x = 3

\(\Rightarrow\) x = \(\frac39=\frac{1}{3}.\)

Correct option is  D 1/3

360.

Which of the following rational numbers lies between 2 and 3 ?A) 2/3B) 3/2C) 5/2D) 5/3

Answer»

Correct option is (C) 5/2

(A) \(\frac{2}{3}\) = \(0.\bar6\) < 2,

(B) \(\frac{3}{2}\) = 1.5 < 2,

(C) \(\frac{5}{2}\) = 2.5 lies between 2 and 3,

(D) \(\frac{5}{3}\) = \(1.\bar6\) < 2

Correct option is  C) 5/3 

361.

Observe the successive magnification of 2.8746 on the number line.Arrange these steps orderly. A) 1,3, 4, 2 B) 3, 4, 2,1 C) 3, 4, 1, 2 D) 1, 2, 4, 3

Answer»

Correct option is  A) 1,3, 4, 2

362.

If ‘x’ is a positive real number and x2 = 2, then the value of x3 is A) 2√2B)3√2 C) 4  D)√2

Answer»

Correct option is (A) 2√2

\(x^2=2\)

\(\Rightarrow\) x = \(\sqrt2\)

\(\therefore\) \(x^3\) = \((\sqrt2)^3\) = \((\sqrt2)^2\sqrt2\) = \(2\sqrt{2}\)

Correct option is  A) 2√2

363.

The decimal form of 1/18 ixA) \(0.0\overline5\)B) \(0.\overline{05}\)C) \(0.\overline5\)D) 0.06

Answer»

Correct option is (A) \(0.0\bar{5}\)

\(\frac{1}{18}=\frac1{2\times9}=\frac{0.5}9\)

\(=0.5\times0.1111....\)

= 0.05555.....

\(0.0\bar{5}\)

Correct option is   A) \(0.0\overline5\)

364.

The radical form of 152/3 is A) \(\sqrt[3]{30}\)B) \(\sqrt[3]{15}\) C) \(\sqrt[3]{225}\)D) \(\sqrt[3]{45}\)

Answer»

Correct option is (C) \(\sqrt[3]{225}\)

\(15^\frac23=(15^2)^\frac13\)

\(=(225)^\frac13=\sqrt[3]{225}\)

Correct option is  C) \(\sqrt[3]{225}\)

365.

1.25 in p/q formA) 4/5B) 5/4C) 5/6D) 6/5

Answer»

Correct option is (B) 5/4

1.25 = \(\frac{125}{100}=\frac{125\div25}{100\div25}\)

\(\frac{5}{4}\)

Correct option is  B) 5/4

366.

The value of “P” on the given number line. A)  -7/5B) \(-\frac{5}{7}\)C) 7/5D) 5/7

Answer»

Correct option is  A)  -7/5

367.

(128)1/7 = ........A) 2B) 4 C) 8 D) 8√2

Answer»

Correct option is (A) 2

\((128)^{\frac17}=(2^7)^{\frac17}\)

= 2

Correct option is  A) 2

368.

The exponential form of \(\sqrt[4]{81}\) is A) 91/4 B) 92/4 C) 31/4 D) 31/8

Answer»

Correct option is (B) 92/4

\(\sqrt[4]{81}=(81)^\frac14=(3^4)^\frac14\)

\(=(3^2)^{\frac24}=9^{\frac24}\)

Correct option is  B) 92/4

369.

 The radical form of 62/3 is A) \(\sqrt[3]{36}\)B) \(\sqrt{36}\) C) \(\sqrt{48}\)D) \(\sqrt{216}\)

Answer»

Correct option is (A) \(\sqrt[3]{36}\)

\(6^\frac23=(6^2)^\frac13=(36)^\frac13\)

\(\sqrt[3]{36}\)

Correct option is   A) \(\sqrt[3]{36}\)

370.

1.121231234………….. is not a rational number because it is A) Recurring Decimal B) Non terminating Decimal C) Non recurring Decimal D) Both B and C

Answer»

Correct option is (D) Both B and C

1.121231234…… is non-terminating and non-recurring decimal.

Thus, 1.121231234…… is an rational number.

D) Both B and C

371.

\(\sqrt[5]{32}\) =...........A) 325B) 2C) 4√2D) 2√2

Answer»

Correct option is (B) 2

\(\sqrt[5]{32}=(32)^\frac15=(2^5)^\frac15\)

= 2

Correct option is  B) 2

372.

The square root of which number is a rational number ? A) 14 B) 80 C) 1.96 D) 0.004

Answer»

Correct option is  C) 1.96

373.

Radical form of 271/5 is A) \(\sqrt{27}\)B) \(\sqrt[3]{27}\)C) \(\sqrt[4]{27}\)D) \(\sqrt[5]{27}\)

Answer»

Correct option is (D) \(\sqrt[5]{27}\)

\(27^{\frac15}\) = \(\sqrt[5]{27}\)

Correct option is  D) \(\sqrt[5]{27}\)

374.

The rational number which lies between two rational numbers a and b is A) a—b B) b—a C) \(\sqrt{ab}\)D) \(\frac{a+b}{2}\)

Answer»

Correct option is (D) \(\frac{a+b}{2}\)

\(\frac{a+b}{2}\) is a rational number lying between two rational numbers a and b.

Correct option is   D) \(\frac{a+b}{2}\)

375.

If a and b are any two rational numbers then a rational number between a and b is A) a + 1 B) b -1 C) \(\frac{a+b}{2}\)D) a . b

Answer»

Correct option is (C) \(\frac{a+b}{2}\)

Rational number between a and b is \(\frac{a+b}{2}.\)

 Correct option is  C) \(\frac{a+b}{2}\)

376.

Express 3.25 in the form of p/qA) \(\frac{13}{4}\)B) \(\frac{65}{2}\) C) \(\frac{13}{40}\) D) \(\frac{13}{20}\)

Answer»

Correct option is (A) \(\frac{13}{4}\)

3.25 = \(\frac{325}{100}=\frac{13}{4}\)

Correct option is   A) \(\frac{13}{4}\)

377.

(3/4)-3 x (3/4)3 x (3/4)6 = ..........A) (3/4)-54B) (3/4)6C) (3/4)12 D)  (3/4)-6

Answer»

Correct option is (B} \((\frac{3}{4})^6\)

\((\frac{3}{4})^{-3}\times(\frac{3}{4})^3\times(\frac{3}{4})^6\)

\(=(\frac{3}{4})^{-3+3+6}=(\frac{3}{4})^6\)

Correct option is  B) (3/4)6

378.

The rationalising factor of \(\frac{1}{\sqrt{27}}\) is A) 9 B) \(\sqrt{6}\)C) \(\sqrt{3}\) D) 3 

Answer»

Correct option is (C) \(\sqrt{3}\)

\(\because\) \(\frac{1}{\sqrt{27}}\times\sqrt3\) \(=\frac{\sqrt3}{3\sqrt{3}}\) \(=\frac13\) which is an irrational number.

\(\therefore\) \(\sqrt{3}\) is the rationalising factor of \(\frac{1}{\sqrt{27}}.\)

Correct option is  C) \(\sqrt{3}\) 

379.

If an  = b, then \(\sqrt[n]b\) =A) n B) a C) b1/n D) a1/n

Answer»

Correct option is (B) a

\(\because\) \(a^n=b\)

\(\Rightarrow\) \(a=b^\frac1n\)

Thus, \(\sqrt[n]{b}\) \(=b^\frac1n\) = a

Correct option is  B) a

380.

If p3 = 216, then p is A) an odd nuipber B) an irrational number C) a perfect number D) a rational number

Answer»

Correct option is (D) a rational number

\(p^3=216=6^3\)

\(\therefore\) p = 6 which is a rational number but not an odd number or an irrational number or a perfect square.

D) a rational number

381.

If x3 = 10, then x is A) a rational number B) an irrational number C) a perfect number D) an even number

Answer»

Correct option is (B) an irrational number

\(x^3=10\)

\(\Rightarrow\) x = \(10^\frac13\) which is an irrational number.

B) an irrational number

382.

The Rationalising factor of \(\frac{1}{5-\sqrt3}\) is A) 5 + √3B)√3 - 5C) \(\frac{1}{5+\sqrt3}\)D) \(\frac{1}{\sqrt3 - 5}\)

Answer»

Correct option is (C) \(\frac{1}{5+\sqrt{3}}\)

\(\because\) \(\frac{1}{5-\sqrt{3}}\times\frac{1}{5+\sqrt{3}}\) \(=\frac{1}{(5-\sqrt{3})(5+\sqrt{3})}\)

\(=\frac{1}{5^2-(\sqrt3)^2}\) \(=\frac1{25-3}\)

\(=\frac1{22}\) which is a rational number.

\(\therefore\) Rationalising factor of \(\frac{1}{5-\sqrt{3}}\) is \(\frac{1}{5+\sqrt{3}}.\)

Correct option is  C) \(\frac{1}{5+\sqrt3}\)

383.

a1/n = ................A) \(\sqrt[n]{a}\)B) a/nC) na D) n + a

Answer»

 Correct option is (A) \(\sqrt[n]{a}\)

\(a^\frac1n\) = \(\sqrt[n]{a}\)

Correct option is   A) \(\sqrt[n]{a}\)

384.

Show that the square of an odd positive integer is of the form 8q + 1, for some integer q.

Answer»

To show:

the square of an odd positive integer is of the form 8q + 1, for some integer q.

Solution:

Let a be any positive integer and b = 4.

Applying the Euclid's division lemma with a and b = 4

we have a = 4p + r

where 0 ≤ r < 4 and p is some integer,

⇒ r can be 0,1,2,3

⇒ a = 4p + 0 , a = 4p + 1 , a = 4p+ 2 , a = 4p + 3,

Since a is odd integer,

So a = 4p + 1 or a = 4p + 3

So any odd integer is of the form a = 4p+ 1 or a = 4p+ 3.

Since any odd positive integer n is of the form 4p + 1 or 4p + 3.

When n = 4p + 1,

then n2 = (4p + 1)2

Apply the formula (a + b)2 = a2 + b2 + 2ab

⇒ (4p + 1)2 = 16p2 + 8p + 1 ..... (1)

Take 8p common out of 16p2 + 8p ⇒ 8p

(2p+ 1) + 1 = 8q + 1 where q = p(2p + 1)

If n = 4p + 3, then n2 = (4p + 3)2

Apply the formula (a + b)2 = a2 + b2 + 2ab

⇒ (4p + 3)2 = 16p2 + 24p + 9

Now 16p2 + 24p + 9 can be written as 16p2 + 24p + 8 + 1

⇒ (4p + 3)2 = 8(2p2 + 3p + 1) + 1 = 8q + 1

where q = 2p2 + 3p + 1

From above results we got that n2 is of the form 8q + 1.

Note:

To show that the square of an odd positive integer is of the form 8q + 1

We have started the question from taking b = 4 initially because when we take square of any form of 4 such as 4p+1 we end up having the values which are the multiple of 8 as in (1).

While attempting these types of questions always remember to start with the value which would end up giving the value the question demands.and follow the above steps.

385.

\(\sqrt[n]{a^m}\) = .................A) am/n B) an/m C) amn D)am-n

Answer»

Correct option is (A) am/n

\(\sqrt[n]{a^m}\) = \((a^m)^\frac1n\)

\(a^{m/n}\)

Correct option is  A) am/n 

386.

\(\cfrac{3^{1/5}}{3^{1/3}}\) = ..............A) 31/15 B) 32/15 C) 3-2/15 D) 38/15

Answer»

Correct option is (C) 3-2/15

\(\cfrac{3^{\frac15}}{3^{\frac13}}\) \(=3^{\frac15-\frac13}=3^{\frac{3-5}{15}}\)

\(3^\frac{-2}{15}\)

Correct option is  C) 3-2/15 

387.

Prove that the square of any positive integer is of the form 3m or, 3m + 1 but not of the form 3m + 2.

Answer»

we know,

That any positive integer N is of the form 3q, 3q + 1 or, 3q + 2.

When N = 3q, then

N2 = 9q2 = 3(3q)2 = 3m where m = 3q2

And,

as q is an integer,

m = 3q2 is also an integer.

When N = 3q + 1,

then N2 = (3q + 1)2 = 9q2 + 6q + 1

⇒ 3q(3q + 2) + 1 = 3m + 1

where m = q(3q + 2)

And,

as q is an integer,

m = q(3q + 2) is also an integer.

When N = 3q + 2,

then N2 = (3q + 2)2 = 9q2 + 12q + 4

⇒ 3(3q2 + 4q + 1) + 1 3m + 1

where,

m = 3q2 + 4q + 1

And,

as q is an integer,

m = 3q2 + 4q + 1 is also an integer.

Therefore,

N2 is of the form 3m, 3m + 1

but not of the form 3m + 2

388.

Important Class 10 Maths MCQ Questions of Real Numbers with Answers?

Answer»

Important Multiple Choice Questions (MCQ Questions) from Real Numbers are provided here for students who are preparing for the CBSE Class 10 Board Exam. Detailed solutions are also provided for all questions. These MCQs will help students clear all the fundamental concepts and prepare effectively for Class 10 Maths exam. 

Practice Class 10 Maths MCQ Question of Real Numbers

1. The decimal expansion of n is

(a) terminating
(b) non-terminating and non-recurring
(c) non-terminating and recurring
(d) does not exist.

2. For some integer m, every odd integer is of the form

(a) m
(b) m + 1
(c) 2m
(d) 2m + 1

3. The product of a non-zero number and an irrational number is:

(a) always irrational
(b) always rational
(c) rational or irrational
(d) one

4. The exponent of 2 in the prime factorisation of 144, is

(a) 4
(b) 5
(c) 6
(d) 3

5. The LCM of two numbers is 1200. Which of the following cannot be their HCF?

(a) 600
(b) 500
(c) 400
(d) 200

6. If two positive integers p and q can be expressed as
\(p = ab^2\) and \(q = a^3b\) a, b being prime numbers, then LCM (p, q) is

(a) \(ab\)
(b) \(a^2b^2\)
(c) \(a^3b^2\)
(d) \(a^3b^3\)

7. In a seminar, the number of participants in English, German and Sanskrit are 45,75 and 135. Find the number of rooms required to house them, if in each room, the same number of participants are to be accommodated and they should be of the same language.

(a) 45
(b) 17
(c) 75
(d) 135

8. If p = HCF (100,190) and q = LCM (100, 190); then \(p^2q^2\) is :

(a) 3.61 x \(10^5\)
(b) 361 x \(10^3\)
(c) 3.61 x \(10^6\)
(d) 3.61 x \(10^8\)

9. The largest positive integer which divides 434 and 539 leaving remainders 9 and 12 respectively is:

(a) 9
(b) 108
(c) 17
(d) 539

10. There is a circular path around a field. Reema takes 22 minutes to complete one round while her friend Saina takes 20 minutes to complete the same. If they both start at the same time and move in the same direction, after how many minutes will they meet again at the starting

(a) 220
(b) 3.4
(c) 440
(d) 4.4

11. If n = \(2^3 × 3^4 × 5^4 × 7\), then the number of consecutive zeros in n, where n is a natural number, is

(a) 2
(b) 3
(c) 4
(d) 7

12. The sum of the exponents of the prime factors in the prime factorisation of 196, is

(a) 1
(b) 2
(c) 4
(d) 6

13. If \(p_1\) and \(p_2\) are two odd prime numbers such that \(p_1\) > \(p_2\), then \(p_1^2 – p_2^2\) is

(a) an even number
(b) an odd number
(c) an odd prime number
(d) a prime number

14. If two positive integers m and n are expressible in the form \(m = pq^3\) and \(n = p^3 q^2\) where p, q are prime numbers, then HCF (m, n) =

(a) \(pq\)
(b) \(pq^2\)
(c) \(p^3q^3\)
(d) \(p^2q^3\)

15. Euclid’s Lemma states that, for given positive integers a and b, there exist unique integers q and r, such that a = bq + r, where:

(a) 0 < r < b
(b) 0 ≤ r < b
(c) 0 < r ≤ b
(d) 0 ≤ r ≤ b

16. If a non-zero rational number is multiplied to an irrational number, we always get:

(a) an irrational number
(b) a rational number
(c) zero
(d) one

17. The values of the remainder r, when a positive integer a is divided by 3 are:

(a) 0, 1, 2, 3
(b) 0, 1
(c) 0, 1, 2
(d) 2, 3, 4

18. On a morning walk, three persons step off together and their steps measure 40 cm, 42 cm and 45 cm, respectively. What is the minimum distance each should walk so that each can cover the same distance in complete steps?

(a) 2520cm
(b) 2525cm
(c) 2555cm
(d) 2528cm

19. Write an irrational number between 2 and 3.

(a) 2.5
(b) 2.001
(c) 2.1333333456…
(d) 2.13

20. The greatest number which divides 87 and 97, leaving 7 as remainder is:

(a) 10
(b) 1
(c) 87 x 97
(d) 6300

Answers & Explanations

1. Answer: (b) non-terminating and non-recurring

2. Answer: (d) 2m + 1

Explanation: As the number 2m will always be even, so if we add 1 to it then, the number will always be odd.

3. Answer: (a) always irrational

Explanation: Product of a non-zero rational and an irrational number is always irrational i.e.,

\(\frac{3}{4}\times\sqrt2\) = (rational) \(\times\) (irrational) = irrational.

4. Answer: (a) 4

Explanation: The prime factorization of 144 is as follows:

144 = 2 × 2 × 2 × 2 × 3 × 3

⇒ 144 = 24 × 32

We know that the exponent of a number am is m.

 The exponent of 2 in the prime factorization of 144 is 4.

5. Answer: (b) 500

Explanation: We know that LCM of two or more numbers is always divisible by their HCF.

1200 is divisible by 600, 200 and 400 but not by 500.

6. Answer: (c) \(a^3b^2\)

Explanation: LCM is Product of the greatest power of each prime factor involved in the number

So LCM = \(a^3b^2\)

7. Answer: (b) 17

Explanation: Since, in each room, the same number of participants, of the same language, are to be accommodated, their number in each room

HCF of 45, 75 and 135.

HCF (45, 75,135) = 15

Each room accommodates 15 participants
\(\Rightarrow\) Total no. of rooms required for English = \(\frac{45}{15}\) = 3

Total no. of rooms required for German = \(\frac{75}{15}\) = 5

Total no. of rooms required for Sanskrit= \(\frac{135}{15}\) = 9

Total no. of rooms = 3 + 5 + 9 = 17

8. Answer: (d) 3.61 x \(10^8\)

Explanation: pq = (HCF) (LCM) = Product of given numbers.

\(\Rightarrow\) pq = 190×100 =19000
\(\Rightarrow\) \(p^2q^2\) = 361 x \(10^6\) = 3.61 x \(10^8\)

9. Answer: (c) 17

Explanation: Required number is the HCF of (434 – 9) and (539 -12)

= HCF of 425 and 527.
= 17

10. Answer: (a) 220

Explanation: LCM of 20 and 22 = 220 (question state: after how many minutes will they meet)

11. Answer: (b) 3

Explanation: If any number ends with the digit 0, it should be divisible by 10,

i.e. it will be divisible by 2 and 5.

Prime factorization of n is given as 23 × 34 × 54 × 7.

It can be observed that there is (2 × 5) × (2 × 5) × (2 × 5)

⇒ 10 × 10 × 10 = 1000

Thus, there are 3 zeros in n.

12. Answer: (c) 4

Explanation: The prime factorization of 196 is as follows:

196 = 2 × 2 × 7 × 7

⇒ 98 = 22 ×72

We know that the exponent of a number am is m.

The sum of powers = 2 + 2 = 4

13. Answer: (a) an even number

Explanation: Let us take \(p_1\) = 5 and \(p_2\) = 3

Then \(p_1^2 – p_2^2\) = 25 – 9 = 16

16 is an even number

14. Answer: (b) \(pq^2\)

Explanation: We know that HCF = Product of the smallest power of each common prime factor in the numbers.

So, HCF (a, b) = \(pq^2\)

15. Answer: (b) 0 ≤ r < b

16. Answer: (a) an irrational number

Explanation: The product of a rational (non-zero) and m irrational number is always an irrational number.

17. Answer: (c) 0, 1, 2

Explanation: According to Euclid’s division lemma,

a = 3q + r, where 0 r < 3

As the number is divided by 3. So, the remainder cannot be greater than divisor 3 also r is an integer. Therefore, the values of r can be 0, 1 or 2.

18. Answer: (a) 2520cm

Explanation: We need to find the L.C.M of 40, 42 and 45 cm to get the required minimum distance.

40 = 2×2×2×5

42 = 2×3×7

45 = 3×3×5

L.C.M. = 2×3×5×2×2×3×7 = 2520

19. Answer: (c) 2.1333333456…

Explanation: Non terminating non repeating

20. Answer: (a) 10

Explanation: Greatest number which divides 87 and 97, leaving 7 as remainder = HCF of 80 and 90

Click here to practice more MCQ Questions from Chapter Real Numbers Class 10 Maths

389.

Fill in the blanks.(i) Every point on the number line is a P number which may either Q or R.(ii) S numbers have either terminating or non-terminating repeating decimal expansion.PQRS(A)RealIntegerNaturalIrrational(B)RationalIntegerRealIrrational(C)IrrationalRationalIntegerNatural(D)RealRationalIrrationalRational

Answer»

The correct option is: (D)

390.

Which of the following statements is INCORRECT?(A) For natural numbers a and b, if a divides b2 then a divides b.(B) For any natural number n,√(n - 1) + √(n + 1) is irrational.(C) Product of distinct prime numbers is always equal to their L.C.M.(D) For any natural number n, 6n never ends with digit zero.

Answer»

The correct option is: (A) For natural numbers a and b, if a divides bthen a divides b.

Explanation:

If a (any prime number) divides b2 and b is natural number, then a divides b.

391.

Four different electronic devices make a beep after every 30 minutes,1 hour, 1 1/2 hour and 1 hour 45 minutes respectively. All the devices beeped together at 12 noon. They will again beep together at .....(A) 12 midnight (B) 3 a.m.(C) 6 a.m. (D) 9 a.m.

Answer»

The correct option is: (D) 9 a.m.

Explanation:

Convert all the hours into minutes to find L.C.M.
1 hour = 60 minutes
3/2 hour = 80 minutes
1 hour 45 minutes = 105 minutes
Hence we take LCM of (30, 60, 90, 105) = 1260 min = 21 hours. 
So if they ring together at 12 noon today, they will ring together at 9 am tomorrow.

392.

Write down the decimal expansions of the number 129/225775 terminating decimal expansions.

Answer»

Given rational number is \(\frac{129}{2^2 \times 5^7 \times 7^5}\)

Since the denominator is not of the form 2n5m

\(\frac{129}{2^2 \times 5^7 \times 7^5}\) has a non-terminating repeating decimal expansion.

393.

Write down the decimal expansions of the number 35/50 terminating decimal expansions.

Answer»

We know, 35/50

= 7/10

= 7/(2 x 5)

= 7/10

= 0.7

394.

Write down the decimal expansions of the number 29/243 terminating decimal expansions.

Answer»

Given rational number is 29/343

29/243 = 29/35

Since the denominator is not of the form 2n5m.

29/243 has a non-terminating repeating decimal expansion.

395.

Write down the decimal expansions of the number 29/343 terminating decimal expansions.

Answer»

We know, 29/343 = 29/73

Given rational number is 29/343

p/q is terminating if

a) p and q are co-prime &

b) q is of the form of 2n 5m where n and m are non-negative integers.

Firstly we check co-prime

29 = 29 × 1

343 = 7 × 7 × 7

29 and 343 have no common factors

Therefore, 29 and 343 are co-prime.

Now, we have to check that q is in the form of 2n5m

343 = 73

So, the denominator is not of the form 2n5m

Thus, 29/343 is a non-terminating repeating decimal.

396.

Which of the following is an irrational number between 4 and 5? A) \(\sqrt{ 20}\)B) √9C) \(\sqrt{ 4.5}\)D) 4.5

Answer»

Correct option is (A) \(\sqrt{20}\)

\(\because\) 16 < 20 < 25

\(\Rightarrow\) \(\sqrt{16}<\sqrt{20}<\sqrt{25}\)

\(\Rightarrow\) \(4<\sqrt{20}<5\) and \(\sqrt{20}\) is an irrational number.

Correct option is  A) \(\sqrt{20}\)

397.

The length of  \(\overline{OP}\) isA) 3/2 UnitsB) √2 UnitsC) √3 Units D) 1 Unit

Answer»

Correct option is  B) √2 Units

398.

The length of  \(\overline{AQ}\) isA) √3 – 1 UnitsB) √3 + √2 UnitsC) √3 - √3 Units D) √3 + 1 Units

Answer»

Correct option is  A) √3 – 1 Units

399.

Perimeter of the rectangle OCSQ A) 2(√3 + 1) Units B) 6 Units C) 2(√2+ √3) Units D) 2(√2 + 1) Units

Answer»

Correct option is  B) 6 Units

400.

√5 lie between A) 1 and 2 B) 2 and 3 C) 3 and 4 D) 0 and 1

Answer»

Correct option is  B) 2 and 3