

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
If a b are rationals and $a\sqrt{2}+b\sqrt{3}$ = $\sqrt{98}+\sqrt{108}-\sqrt{48}-\sqrt{72}$then the values of a b are respectively1). 1,22). 1,33). 2,14). 2,3 |
Answer» | |
2. |
If $\frac{4+3\sqrt{3}}{\sqrt{7+4\sqrt{3}}}$ =$A+\sqrt{B}$ , Then B-A is1). -132). $2\sqrt{13}$3). 134). $3\sqrt{3}-\sqrt{7}$ |
Answer» RIGHT ANSWER for this QUESTION is $2\sqrt{13}$ | |
3. |
Simplify : $\frac{(6.25)^{\frac{1}{2}}\times (0.0144)^{\frac{1}{2}}+1}{(0.027)^{\frac{1}{3}}\times(81)^{\frac{1}{4}}}$1). 0.142). 1.43). 14). $1.\overline{4}$ |
Answer» | |
4. |
The value of $\sqrt[3]{0.000125}$ is :1). 0.0052). 0.053). 0.54). 0.0005 |
Answer» ANSWER for this QUESTION is OPTION 2 | |
5. |
$\left[\left\{\left(-\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}$ is equal to :1). $\frac{1}{16}$2). 163). $-\frac{1}{16}$4). -16 |
Answer» $\FRAC{1}{16}$ is the correct ANSWER as PER the ssc answer key |
|
6. |
The ascending order of $(2.89)^{0.5}$ ,$2-(0.5)^{2}$ , $\sqrt{3}$ and $\sqrt[3]{0.008}$ is :1). $2-(0.5)^{2}$ , $\sqrt{3}$ and $\sqrt[3]{0.008}$,$(2.89)^{0.5}$2). $\sqrt[3]{0.008}$,$(2.89)^{0.5}$,$\sqrt{3}$,$2-(0.5)^{2}$3). $\sqrt[3]{0.008}$,$\sqrt{3}$,$(2.89)^{0.5}$ ,$2-(0.5)^{2}$4). $\sqrt{3}$ and $\sqrt[3]{0.008}$,$2-(0.5)^{2}$,$(2.89)^{0.5}$ |
Answer» CORRECT ANSWER is: $\SQRT[3]{0.008}$,$(2.89)^{0.5}$,$\sqrt{3}$,$2-(0.5)^{2}$ | |
7. |
The greatest number among $2^{60}$,$3^{48}$,$4^{36}$, and $5^{24}$ is :1). $2^{60}$2). $3^{48}$3). $4^{36}$4). $5^{24}$ |
Answer» | |
8. |
The value of$\sqrt{\frac{0.324\times 0.081\times 4.624}{1.5625\times 0.0289\times 72.9\times 64}}$is :1). 2.42). 243). 0.0244). 0.24 |
Answer» | |
9. |
Find the value of : $(0.98)^{3}+ (0.02)^{3}+3\times 0.98\times 0.02-1$1). 1.982). 1.093). 14). 0 |
Answer» OPTION option 4 is the CORRECT ANSWER | |
10. |
$(4)^{0.5}\times (0.5)^{4}$is equal to1). 12). 43). $\frac{1}{8}$4). $\frac{1}{32}$ |
Answer» | |
11. |
The simplification of $\frac{0.06\times 0.06\times 0.06 - 0.05\times0.05\times 0.05}{0.06\times0.06 + 0.06\times 0.05 + 0.05\times 0.05}$gives :1). 0.012). 0.0013). 0.14). 0.02 |
Answer» This QUESTION was asked some where in previous YEAR papers of SSC, and correct ANSWER was 0.01 |
|
12. |
$16^{\frac{3}{4}}$ is equal to :1). $4\sqrt{2}$2). 83). $2\sqrt{2}$4). 16 |
Answer» 8 is the BEST SUITED | |
13. |
$\left(\frac{2.75\times 2.75\times 2.75-2.25\times 2.25\times 2.25}{2.75\times 2.75+ 2.75\times 2.25 + 2.25\times 2.25}\right)$ is equal to :1). -52). 0.53). -0.54). 5 |
Answer» | |
14. |
$\frac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}$ is equal to1). $5+2\sqrt{6}$2). $\frac{3+2\sqrt{6}}{2}$3). $5-2\sqrt{3}$4). $5+2\sqrt{3}$ |
Answer» OPTION 1 : SEEMS CORRECT | |
15. |
$\left(\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}\right)$ =1). 52). 43). 34). 2 |
Answer» This QUESTION was asked some where in previous year PAPERS of SSC, and CORRECT ANSWER was option 1 |
|
16. |
The greatest of the number $(2.89)^{0.5}$ ,$2-(0.5)^{2}$ ,$1+\frac{0.5}{1-\frac{1}{2}}$ , $\sqrt{3}$ is :1). $(2.89)^{0.5}$2). $2-(0.5)^{2}$3). $1+\frac{0.5}{1-\frac{1}{2}}$4). $\sqrt{3}$ |
Answer» | |
17. |
The simplified value of$(\sqrt{6} +\sqrt{10} -\sqrt{21}-\sqrt{35})(\sqrt{6}-\sqrt{10} +\sqrt{21}-\sqrt{35})$ is :1). 132). 123). 114). 10 |
Answer» 10 | |
18. |
Which one of the following is the least $\sqrt{3}$,$\sqrt[3]{2}$,$\sqrt{2}$,$\sqrt[3]{4}$1). $\sqrt{2}$2). $\sqrt[3]{4}$3). $\sqrt{3}$4). $\sqrt[3]{2}$ |
Answer» | |
19. |
$\frac{3^{0}+3^{-1}}{3^{-1}-3^{0}}$ is simplified to1). -22). -13). 14). 2 |
Answer» CORRECT ANSWER is: -2 | |
20. |
$(2.4\times 10^{3})\div(8\times 10^{-2})$ equals:1). $3\times 10^{5}$2). $3\times 10^{4}$3). $3\times 10^{-5}$4). 30 |
Answer» OPTION 2 is the ANSWER | |
21. |
The value of $\frac{5.71\times 5.71\times 5.71-2.79\times 2.79\times 2.79}{5.71\times 5.71 +5.71\times 2.79+ 2.79\times 2.79}$in simplified form is :1). 8.52). 8.63). 2.824). 2.92 |
Answer» | |
22. |
The greatest among $\sqrt{7}-\sqrt{5}$,$\sqrt{5}-\sqrt{3}$,$\sqrt{9}-\sqrt{7}$,$\sqrt{11}-\sqrt{9}$is1). $\sqrt{7}-\sqrt{5}$2). $\sqrt{5}-\sqrt{3}$3). $\sqrt{9}-\sqrt{7}$4). $\sqrt{11}-\sqrt{9}$ |
Answer» ANSWER for this QUESTION is $\SQRT{5}-\sqrt{3}$ | |
23. |
Simplify : $\frac{0.41\times 0.41\times 0.41 + 0.69\times 0.69\times 0.69}{0.41\times 0.41- 0.41\times 0.69 + 0.69 + 0.69}$1). 0.282). 1.13). 114). 2.8 |
Answer» | |
24. |
$\left[3-4(3-4)^{-1}\right]^{-1}$ is equal to :1). 72). -73). $\frac{1}{7}$4). $-\frac{1}{7}$ |
Answer» | |
25. |
The value of $\sqrt{11+2\sqrt{30}}-\frac{1}{\sqrt{11+2\sqrt{30}}}$ is :1). $2\sqrt{5}$2). $2\sqrt{6}$3). $1+\sqrt{6}$4). $1+\sqrt{5}$ |
Answer» RIGHT ANSWER for this QUESTION is OPTION 1 | |
26. |
$\frac{(5.624)^{3}+(4.376)^{3}}{5.624\times 5.624-(5.624\times 4.376) +4.376\times 4.376}$is equal to :1). 102). 1.2483). 20.444). 1 |
Answer» 10 : - OPTION 1 | |
27. |
The value of $(256)^{0.16}\times (256)^{0.09}$ is1). 256.252). 643). 164). 4 |
Answer» 4 SEEMS CORRECT. | |
28. |
$55^{3} + 17^{3} - 72^{3} + 201960$ is equal to :1). -12). 03). 14). 17 |
Answer» HELLO, 0 is CORRECT | |
29. |
Let a = $\frac{1}{2-\sqrt{3}}+\frac{1}{3-\sqrt{8}}+\frac{1}{4-\sqrt{15}}$, Then we have1). a < 18 but $a\neq 9$2). a > 183). a = 184). a = 9 |
Answer» OPTION option 1 is the CORRECT ANSWER | |
30. |
The value of $(256)^{0.16}\times (16)^{0.18}$ is :1). 42). -43). 164). 256 |
Answer» ANSWER for this QUESTION is 4 | |
31. |
$\frac{(0.05)^{2} + (0.41)^{2} + (0.073)^{2}}{(0.005)^{2}+(0.041)^{2} +(0.0073)^{2}}$ is1). 102). 1003). 10004). None of these |
Answer» OPTION 2 is the RIGHT ANSWER | |
32. |
$\left(\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}+\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}\right)$simplified to1). $\sqrt{5}+\sqrt{6}$2). $2\sqrt{5}+\sqrt{6}$3). $\sqrt{5}-\sqrt{6}$4). $2\sqrt{5}-3\sqrt{6}$ |
Answer» | |
33. |
Evaluate $\sqrt{20}+\sqrt{12}+\sqrt[3]{729}-\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{81}$1). $\sqrt{2}$2). $\sqrt{3}$3). 04). $2\sqrt{2}$ |
Answer» | |
35. |
The approximate value of $\frac{3\sqrt{12}}{2\sqrt{28}}+\frac{2\sqrt{21}}{\sqrt{98}}$ is :1). 1.07272). 1.06063). 1.60264). 1.6007 |
Answer» | |
36. |
Evaluate : $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$1). 22). 33). 44). 5 |
Answer» OPTION 2 : 3 is CORRECT | |
37. |
$\left(\frac{2}{\sqrt{5}+\sqrt{3}}-\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{1}{\sqrt{6}+\sqrt{5}}\right)$ is equal to1). $2\sqrt{6}$2). $2\sqrt{5}$3). $2\sqrt{3}$4). 0 |
Answer» HELLO, $2\sqrt{6}$ is CORRECT | |
38. |
If $\frac{\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}$ = $\sqrt{3}$ , then a: b is equal to1). 2:$\sqrt{3}$2). $\sqrt{3}$:43). $\sqrt{3}$:24). 4:$\sqrt{3}$ |
Answer» OPTION 4 is the ANSWER | |
39. |
$\frac{(998)^{2} -(997)^{2} -45}{(98)^{2} -(97)^{2}}$equals1). 19952). 1953). 954). 10 |
Answer» OPTION 4 is the RIGHT ONE | |
40. |
The least one of$2\sqrt{3}$,$2\sqrt[4]{5}$,$\sqrt{8}$, and $3\sqrt{2}$ is1). $2\sqrt{3}$2). $2\sqrt[4]{5}$3). $\sqrt{8}$4). $3\sqrt{2}$ |
Answer» | |
41. |
Greatest among the numbers $\sqrt[3]{9}$,$\sqrt{3}$,$\sqrt[4]{16}$,$\sqrt[6]{80}$1). $\sqrt[3]{9}$2). $\sqrt{3}$3). $\sqrt[4]{16}$4). $\sqrt[6]{80}$ |
Answer» | |
42. |
The value of $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{9}}$ is :1). 22). 03). 44). 1 |
Answer» ANSWER for this QUESTION is 2 | |
43. |
$\sqrt{\sqrt[3]{0.004096}}$ is equal to1). 42). 0.43). 0.044). 0.004 |
Answer» CORRECT ANSWER is: 0.4 | |
44. |
$\left(\sqrt{2}+\sqrt{7-2\sqrt{10}})\right)$ is equal to :1). $\sqrt{2}$2). $\sqrt{7}$3). $\sqrt{5}$4). $2\sqrt{5}$ |
Answer» | |
45. |
$\frac{256\times 256-144\times 144}{112}$ is equal to :1). 4202). 4003). 3604). 320 |
Answer» | |
46. |
$\frac{(2.3)^{3} + 0.027}{(2.3)^{2} - 0.69 + 0.09}$ is equal to :1). 2.602). 2.003). 2.334). 2.80 |
Answer» | |
48. |
The greatest among the numbers$\sqrt[4]{3}$,$\sqrt[5]{4}$,$\sqrt[10]{12}$,1 is1). 12). $\sqrt[5]{4}$3). $\sqrt[4]{3}$4). $\sqrt[10]{12}$ |
Answer» RIGHT Answer for this question is $\SQRT[5]{4}$ | |
49. |
$\frac{12}{3+\sqrt{5}+2\sqrt{2}}$ is equal to1). $1-\sqrt{5}+\sqrt{2}+\sqrt{10}$2). $1+\sqrt{5}+\sqrt{2}-\sqrt{10}$3). $1+\sqrt{5}-\sqrt{2}+\sqrt{10}$4). $1-\sqrt{5}-\sqrt{2}+\sqrt{10}$ |
Answer» I am not sure, may be $1+\SQRT{5}+\sqrt{2}-\sqrt{10}$ is CORRECT |
|
50. |
The value of $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}$ is1). $\sqrt{2}$2). $\sqrt{3}$3). 14). 4(\sqrt{3}+\sqrt{2}) |
Answer» it from previous year SSC papers, $\sqrt{3}$ is the RIGHT answer |
|