InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove that: `cos18^0-si n 18^0=sqrt(2)sin27^0` |
|
Answer» `L.H.S. = cos 18^@ - sin 18^@` `= cos 18^@ - sin (90-72)^@` `= cos 18^@ - cos72^@` Using `cosA - cosB = -2sin((A-B)/2)((A+B)/2),` `= -2sin((18-72)/2)^@sin((18+72)/2)^@` `= -2sin(-27^@)sin45^@` `=2sin27^@(1/sqrt2)` `=sqrt2sin27^@ = R.H.S.` |
|
| 2. |
Prove that: `(sin(A-C)+2sinA+sin(A+C)) / ("sin"("B"-"C")+2sinB+"sin"(B+C))`=`(sinA)/(sinB)`` |
|
Answer» `L.H.S. = (sin(A-C)+2sinA+sin(A+C)) / (sin(B-C)+2sinB+sin(B+C))` `=(sinAcosC-cosAsinC+2sinA+sinAcosC+cosAsinC)/(sinBcosC-cosBsinC+2sinB+sinBcosC+cosBsinC)` `=(2sinA(1+cosC))/(2sinB(1+cosC))` `=sinA/sinB = R.H.S.` |
|
| 3. |
Prove that: `(sinA+s in3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A` |
|
Answer» `L.H.S = (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)` `=((sin7A+sinA)+(sin5A+sin3A))/((cos7A+cosA)+(cos5A+cos3A)` `=((2sin4Acos3A)+(2sin4AcosA))/((2cos4Acos3A+2cos4AcosA))` `=(2sin4A)/(2cos4A)[(cos3A+cosA)/(cos3A+cosA)]` `=tan4A = R.H.S.` |
|
| 4. |
Prove that: `1+cos2x+cos4x+cos6x=4cosxcos2xcos3x` |
|
Answer» `L.H.S. = 1+cos2x+cos4x+cos6x` `=(1+cos4x)+(cos2x+cos6x)` `=(2cos^2 2x)+(2cos((2x+6x)/2)cos((2x-6x)/2))` `=(2cos^2 2x)+(2cos(4x)cos(2x))` `=2cos 2x[cos 2x+cos 4x]` `=2cos 2x[2cos3xcosx]` `=4cosxcos2xcos3x = R.H.S.` |
|
| 5. |
If `(sin(theta+alpha))/(cos(theta-alpha))=(1-m)/(1+m)`, prove that `tan(pi/4-theta)tan(pi/4-alpha)=m` |
|
Answer» Let, `pi/4 - theta = A and pi/4-alpha = B` Then`pi/4-theta+pi/4-alpha = A+B` `=>theta+alpha = pi/2-(A+B)` `=>sin(theta+alpha) = sin(pi/2-(A+B))` `=>sin(theta+alpha) = cos(A+B)` Similarly, `cos(theta-alpha) = cos(B-A)` Now, putting these values in the given equation, `(cos(A+B))/(cos(B-A)) = (1-m)/(1+m)` `=>(cos(B-A))/(cos(A+B)) = (1+m)/(1-m)` Using componendo and dividendo, `=>(cos(B-A)+cos(A+B))/(cos(B-A)-cos(A+B)) = (1+m+1-m)/(1+m-1+m)` `=>(2cosAcosB)/(2sinAsinB) = 2/(2m)` `=>1/(tanAtanB) = 1/m` `=>tanAtanb = m` `:. tan(pi/4-theta)tan(pi/4-alpha) = m.` |
|
| 6. |
Prove that: `4"cos"12^0cos48^0cos72^0=cos36^0` |
|
Answer» `L.H.S. = 4cos12^@cos48^@cos72^@` `=2*(2cos12^@cos48^@)cos72^@` We know, `2cosAcosB = cos(A+B)+cos(A-B)` So, our expression becomes, `=2*(cos60^@+cos36^@)cos72^@` `=2cos60^@cos72^@+2cos36^@cos72^@` `=2(1/2)cos72^@+cos108^@+cos36^@` `=cos72^@+cos(pi-72)^@+cos36^@` `=cos72^@-cos72^@+cos36^@` `=cos36^@` `=R.H.S.` |
|
| 7. |
If `sinx+siny=sqrt(3)(cos y-cos x),`then `sin3x+sin3y=`(a)`2sin3x`(b) 0 (c) 1 (d) none of these |
|
Answer» `sinx+siny = sqrt3(cosy-cosx)` `=>2sin((x+y)/2)cos((x-y)/2)= sqrt3(2sin((x+y)/2)sin((x-y)/2)) ` `=>sin((x+y)/2)cos((x-y)/2) - sqrt3sin((x+y)/2)sin((x-y)/2) = 0` `=>sin((x+y)/2)[cos((x-y)/2) - sqrt3sin((x-y)/2)] = 0` `=>sin((x+y)/2) = 0 or cos((x-y)/2) - sqrt3sin((x-y)/2) = 0` `=>x+y = 0 or cot ((x-y)/2) = sqrt3` `=>x = -y or (x-y)/2 = pi/6` `=>x= -y or x = y+pi/3` When `x = -y,` `sin3x+siny = sin(-3y)+sin3y = sin3y-sin3y= 0` When, `x = y+pi/3,` `sin3x+siny = sin3(y+pi/3)+sin3y = sin(pi+3y)+sin3y= -sin3y+sin3y = 0` `:.` In both cases, ` sin3x+sin3y = 0.` |
|
| 8. |
If `cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta),`prove that `cotalphacotbetacotgamma=cotdelta` |
|
Answer» `cos(alpha+beta)sin(gamma+delta) = cos(alpha-beta)sin(gamma-delta)` `cos(alpha+beta)/cos(alpha-beta) = sin(gamma-delta)/sin(gamma+delta)` Using componendo and dividendo, `=>(cos(alpha+beta)+cos(alpha-beta))/ (cos(alpha+beta)-cos(alpha-beta))= (sin(gamma-delta)+sin(gamma+delta))/(sin(gamma-delta)-sin(gamma+delta))` `=>(2cosalphacosbeta)/(-2sinalphasinbeta) = (2singammacos(-delta))/(2sin(-delta)cosgamma)` `=>(cosalphacosbeta)/(-sinalphasinbeta) = (singammacosdelta)/(-sindeltacosgamma)` `=>cotalphacotbeta = cotdelta/cotgamma` `=>cotalphacotbeta cotgamma = cot delta` |
|
| 9. |
If `xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3)`, prove that `x y+y z+z x=0.` |
|
Answer» Let `xcostheta = ycos(theta+(2pi)/3) = zcos(theta+(4pi)/3) = k` Then, `k/x = cos theta, k/y =cos(theta+(2pi)/3), k/z = cos(theta+(4pi)/3)` `:.k(1/x+1/y+1/z) = cos theta +cos(theta+(2pi)/3) + cos(theta+(4pi)/3)` `=>k(1/x+1/y+1/z) = (cos theta +cos(theta+(4pi)/3)) + cos(theta+(2pi)/3)` `=>k(1/x+1/y+1/z) = (2cos(theta+(2pi)/3)cos((-2pi)/3)) + cos(theta+(2pi)/3)` `=>k(1/x+1/y+1/z) = (2cos(theta+(2pi)/3)cos((2pi)/3)) + cos(theta+(2pi)/3)` `=>k(1/x+1/y+1/z) = (2cos(theta+(2pi)/3)(-1/2)) + cos(theta+(2pi)/3)` `=>k(1/x+1/y+1/z) = -cos(theta+(2pi)/3) + cos(theta+(2pi)/3)` `=>1/x+1/y+1/z = 0` `=>(yz+zx+xy)/(xyz) = 0` `=>xy+yz+zx = 0` |
|