Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

State whether the statement are True or False.It is possible to have a triangle in which each angle is equal to 60°

Answer»

True

Since in equilateral triangle each angle is equal to 60°.

452.

State whether the statement are True or False.It is possible to have a triangle in which two angles are acute.

Answer»

True.

It is possible to have a triangle in which two angles are acute.

453.

State whether the statement are True or False.It is possible to have a triangle in which each angle is greater than 60°

Answer»

False

If all angles of a triangle are greater than 60°, then their sum will be greater than 180°. But in a triangle sum of all angles is 180°

∴ Triangle is not possible.

454.

The bisectors of exterior angles at B and C of Δ ABC meet at O, if ∠A= x°, then ∠BOC =A. 90°+ \(\frac{x°}{2}\)B. 90°- \(\frac{x°}{2}\)C. 180°+ \(\frac{x°}{2}\)D. 180°- \(\frac{x°}{2}\)

Answer»

∠OBC = 180° - ∠B - \(\frac{1}{2}\)(180° - ∠B)

∠OBC = 90° - \(\frac{1}{2}\)∠B

And,

∠OCB = 180° - ∠C - \(\frac{1}{2}\)(180° - ∠C)

∠OCB = 90° - \(\frac{1}{2}\)∠C

In ΔBOC

∠BOC + ∠OCB + ∠OBC = 180°

∠BOC + 90° - \(\frac{1}{2}\)∠C + 90° - \(\frac{1}{2}\)∠B = 180°

∠BOC = \(\frac{1}{2}\)(∠B + ∠C)

∠BOC = \(\frac{1}{2}\)(180° - ∠A) [From ]

∠BOC = 90° - \(\frac{1}{2}\)∠A

∠BOC = 90° - \(\frac{x}{2}\)

455.

In triangle ABC, AB = 5 cm, BC = 4 cm, CA = 3 cm, which of the following is TRUE? A) ∠A = ∠B = ∠C B) ∠B > ∠A > ∠C C) ∠A < ∠B < ∠C D) ∠B < ∠A < ∠C

Answer»

B) ∠B > ∠A > ∠C

456.

The angles of a triangle are in the ratio 1 : 2 : 3. Find the angles.

Answer»

Given that ratio of the angle = 1: 2: 3 

Sum of the terms of the ratio – 1 + 2 + 3 = 6 

Sum of the angles of a triangle = 1800 

∴ 1st angle = 1/6 x 180° = 30° (angle sum property) 

∴ 2nd angle = 2/6 x 180° = 60° (angle – sum property) 

∴ 3rd angle = 3/6 x 180° = 90° (angle – sum property)

457.

Fill in the blanks to make the statements true.If ∆POR and ∆XYZ are congruent under the correspondence QPR ⟷ XYZ, then(i) ∠R = ________(ii) QR = ________(iii) ∠P = ________(iv) OP = ________(v) ∠Q = ________(vi) RP = ________

Answer»

If ∆PQR and ∆XYZ are congruent under the correspondence QPR ↔ XYZ, then

(i) ∠R = ∠Z 

(ii) QR = XZ 

(iii) ∠P = ∠Y

(iv) QP = XY 

(v) ∠Q = ∠X 

(vi) RP = ZY

458.

Fill in the blanks to make the statements true.In Fig., ∆PQR ≅ ∆ ________

Answer»

XZY: 

In ∆PQR and ∆XZY,

PQ = XZ = 3.5 cm

∠PQR = ∠XZY = 45°

QR = ZY = 5 cm

∴ ∆PQR ≅ ∆XZY [SAS criterion]

459.

Fill in the blanks to make the statements true.In the given figure, ∆PQR ≅ ∆ ________

Answer»

RSP : 

In ∆PQR and ∆RSP,

QR = SP = 4.1 cm

∠PRQ = ∠RPS = 45°

PR = RP [common]

∴ ∆PQR ≅ ∆RSP [SAS criterion]

460.

Fill in the blanks to make the statements true.In the given figure, ∆ ________ ≅ ∆PQR

Answer»

DRQ: 

In ∆PQR and ∆DRQ,

∠PRQ = ∠DQR = 40°

∠PQR = ∠DRQ = 30° + 40° = 70°

QR = RQ [common]

∴ ∆PQR ≅ ∆DRO [ASA criterion]

∆DRQ............
461.

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer» For any Q and any R
ST. QR>OP and OR>OP
`/_OPQ`
`angleOPQ=90^0`
sum of angles=`angleOQP+angleQOP+90^0=180^0`
`angleOQP+angleQOP=90^0`
`angleOQP=angleOPQ-angleQOP`
`angleOQPThe side opposite to greater angle is longer OP
462.

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer»

P is a point on straight line l. 

PR is the segmnent for l drawn such that PQ ⊥ l. 

Now, in ∆PQR, 

∠PQR = 90° (Construction) 

∴ ∠QPR + ∠QRP = 90° 

∴ ∠QRP < ∠PQR 

∴ PQ < PR 

Any line segment drawn from P to l they form small angle. 

∴ PQ ⊥ l is smaller.

463.

Triangle DEF is right-angled at E, EG is perpendicular to DF and GH is perpendicular to EF. Prove that:1) GH2=EH.HF2) EG2=DG.GF

Answer»

Given :-

  • ∠E = 90° .
  • EG ⟂ DF .
  • GH ⟂ EF.

To Prove :-

  • (i) GH² = EH * HF
  • (ii) EG² = DG * GF .

Solution :-

Let us assume that, ∠F = x° .

Than,

→ ∠FEG = (90 - x°) { As, EG ⟂ DF .}

Also, in ∆GHF,

→ ∠HGF = (90 - x°) { As, GH ⟂ EF. }

Now, in ∆GHE and ∆FHG, we have,

→ ∠GHE = ∠FHG (90°)

→ ∠GEH = ∠FGH (90 - x°)

So,

→ ∆GHE ~ ∆FHG . (By AA similarity) .

Therefore,

→ GH/EH = HF/GH (By CPCT)

→ GH² = EH * HF (Proved).

________________________________________________________________________

Now, Similarly,

→ ∠EFD = x°

→ ∠EDG = (90 - x°)

→ ∠FEG = (90 - x°)

Now, in ∆EGF and ∆DGE,

→ ∠EGF = ∠DGE. (90°)

→ ∠FEG = ∠EDG. (90 - x°)

So,

→ ∆EGF ~ ∆DGE .(By AA Similarity.)

Therefore,

→ EG / GF = DG / EG (By CPCT. )

Hence,

→ EG² = DG * GF. (Proved.)

464.

From the given figure, what is the additional information needed to prove ΔOBE ≅ ΔOCD ?A) BE = CD B) ΔBOE = ΔCOD C) ΔOBE = ΔOCD D) BD = CE

Answer»

B) ΔBOE = ΔCOD

465.

□ABCD is a Rhombus prove that the diagonals divide the rhombus into four congruent triangles, (let the point of intersection is O.) For the above problem what is R.T.P. ? A) ΔABC ≅ ΔACD ≅ ΔABD ≅ ΔBCD B) ΔABC ≅ ΔACD C) ΔABD ≅ ΔBCD D) ΔOAB ≅ ΔOBC ≅ ΔOCD ≅ ΔOAD

Answer»

D) AOAB ≅ AOBC ≅ AOCD ≅ AOAD

466.

ABCD is a trapezium in which AB||DC and its diagonals intersect each other at the point O. Show that `(A O)/(B O)=(C O)/(D O)`.

Answer» `In/_ACD`
EO||DC
`(AE)/(ED)=(AO)/(OC)`-(1)
`In/_BCD`
OF||DC
`(BO)/(OD)=(BF)/(FC)`
`In/_ADB`
EO||AB
`(EA)/(DE)=(OB)/(OD)`
putting this value in equation 1
`(OC)/(OB)((AO)/(OC)=(OB)/(OD))(OC)/(OB)`
`(AO)/(OB)=(OC)/(OD)`
467.

In the given figure. ∆ABC and ∆AMP are two right triangles, right angled at B and M respectively. Prove that: (i) ∆ABC ~ ∆AMP

Answer»

Data: ∆ABC and ∆AMP are two right triangles, right angled at B and M respectvely. 

To Prove: i) ∆ABC ~ ∆AMP 

(ii) \(\frac{CA}{PA} = \frac{BC}{MP}\)

(i) In ∆ABC and ∆AMP, 

∠ABC = ∠AMP = 90° (data) 

∠CAB = ∠MAP (common) 

∴ ∠ACB = ∠MPA 

∴ These are equiangular triangles. 

Similarity criterion for ∆ is A.A.A. 

∴ ∆ABC ~ ∆AMP 

(ii) ∆ABC ~ ∆AMP(Proved) 

∴ Corresponding sides are in proportion. 

LC and LP are corresponding angles. 

∴ Adjacent sides are CA, PA. 

Similarly BC and MP are adjacent sides.

∴ \(\frac{CA}{PA} = \frac{BC}{MP}\)

468.

In the following figure. E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD ⊥ BC and EF ⊥ AC, prove that ∆ABD ~ ∆ECF

Answer»

Data: E Is a point on side CB produced of an isosceles ∆ABC with AB = AC. AD ⊥ BC and EF ⊥ AC, 

To Prove: ∆ABD ~ ∆ECF 

In ∆ABD and ∆ECF. 

∠ADB = ∠EFC = 90° (data) 

∠ABD = ∠FCE (∵ ∠B = ∠C) 

∠BAD = ∠FEC 

∴ Equiangular triangles. 

∴ Similarity criterion for triangles is A.A.A. 

∴ ∆ABD ~ ∆ECF.

469.

CD and OH are respectively the bisectors of ∠ACB and ∠EGF such that D and H lie on sides AB and FE of ∆ABC and ∆EFG respectively.If ∆ABC ~ ∆EFG, show that (i) \(\frac{CD}{GH} = \frac{AC}{FG}\)(ii) ∆DCB ~ ∆HGE (iii) ∆DCA ~ ∆HGF

Answer»

Data : CD and OH are respectively the bisectors of ∠ACB and ∠EGF such that D and H 11e on sides AB and FE of ∆ABC and ∆EFG respectively. 

∆ABC ~ ∆EFG 

To Prove: 

(i) \(\frac{CD}{GH} = \frac{AC}{FG}\)

(ii) ∆DCB ~ ∆HGE 

(iii) ∆DCA ~ ∆HGF 

Proof: ∆ABC ~ ∆EFG (data given) 

∴ Their corresponding sides are in proportion.

 ∴ \(\frac{AB}{EF} = \frac{BC}{FG} = \frac{AC}{EG}\)

∠B = ∠F, ∠A = ∠E, ∠C = ∠G. 

(i) In ∆ADC and ∆EHG, 

∠A = ∠E . ∠ACD = ∠EGH 

∴ Their sides are in proportion.

 ∴ \(\frac{CD}{GH} = \frac{AC}{FG}\)

(ii) In ∆DCB and ∆HGE. 

∴ \(\frac{CD}{GH} = \frac{AC}{FG}\)

∴ ∆DCB ~ ∆HGE 

(iii) In ∆DCA and ∆HGE, 

∴ \(\frac{DC}{GH} = \frac{AD}{EH} = \frac{AC}{EG}\)

∴ ∆DCA ~ ∆HGE

470.

Find the height of an equilateral triangle of side 12 cm

Answer» Correct Answer - `6sqrt(3) cm`
471.

The height of an equilateral triangle having each side 12 cm, isA. `6sqrt(2) cm`B. `6sqrt(3) cm`C. `3sqrt(6) cm`D. `6sqrt(6) cm`

Answer» Correct Answer - B
472.

If AB = QR, BC = PR and CA = PQ, then A) ΔABC ≅ ΔPQR B) ΔCBA ≅ ΔPRQ C) ΔBAC ≅ ΔRPQ D) ΔPQR ≅ ΔBCA

Answer»

B) ΔCBA ≅ ΔPRQ

473.

Take a triangular piece of paper. Choose three different colors or signs to mark the three comers of the triangle on both sides of the paper. Fold the paper at the midpoints of two sides as observe?

Answer»

The three angles of the triangle form a straight angle.

∴ m∠A + m∠B + m∠C = 180° 

Hence, the sum of the measures of the angles of a triangle is 180°.

474.

If a, b and c are the lengths of sides of a triangle, which of the following is TRUE? A) a + b&gt;c, a - b&gt;c B) a + b &lt; c, a - bc, a-b &lt; cC) a + b &lt; c, a – b &gt; cD) ∠B &lt; ∠A &lt; ∠C

Answer»

D) ∠B > ∠A > ∠C

475.

The hypotenuse of a right triangle is 25 cm. The difference between the lengths of the other two sides of the triangle is 5 cm. Find the lengths of these sides.A. 10 cm, 15 cmB. 15 cm, 20 cmC. 12 cm, 17 cmD. 13 cm, 18 cm

Answer» Correct Answer - B
476.

Take a triangular piece of paper and make three different types of marks near the three angles. Take a point approximately at the center of the triangle. From this point, draw three lines that meet the three sides. Cut the paper along those lines. Place the three angles side by side as shown. See how the three angles of a triangle together form a straight angle, or, an angle that measures 180°.

Answer»

The three angles of the triangle form a straight angle.

Hence, the sum of the measures of the angles of a triangle is 180°.

477.

In the adjoining figure, measures of some angles are given. Using the measures, find the values of x, y, z.

Answer»

i. ∠NET = 100° and ∠EMR = 140° 

∠EMN + ∠EMR = 180° 

∴ z +140° =180°

 ∴ z = 180° -140° 

∴ z = 40°

ii. Also, ∠NET + ∠NEM = 180° [Angles in a linear pair] 

∴ 100° + y = 180° 

∴ y = 180° – 100° 

∴ y = 80°

iii. In ∆ENM, 

∴ ∠ENM + ∠NEM + ∠EMN = 180° [Sum of the measures of the angles of a triangle is 180°] 

∴ x +80°+ 40°= 180° 

∴ x = 180° – 80° – 40° 

∴ x = 60° 

∴ x = 60°, = 80°, z = 40°

478.

In the adjoining figure, line AB || line DE. Find the measures of ∠DRE and ∠ARE using given measures of some angles.

Answer»

i. ∠BAD = 70°, ∠DER = 40° [Given] 

line AB || line DE and seg AD is their transversal. 

∴ ∠EDA = ∠BAD [Alternate Angles] 

∴ ∠EDA = 70° ….(i) 

In ∆DRE,

∠EDR + ∠DER + ∠DRE = 180° [Sum of the measures of the angles of a triangle is 180°] 

∴ 70°+ 40° +∠DRE = 180° [From (i) and D – R – A] 

∴ ∠DRE = 180° -70° -40° 

∴ ∠DRE = 70°

ii. ∠DRE + ∠ARE = 180° [Angles in a linear pair] 

∴ 70° + ∠ARE = 180° 

∴ ∠ARE = 180°-70° 

∴ ∠ARE =110°

 ∴ ∠DRE = 70°, ∠ARE = 110°

479.

In the adjoining figure, measures of some angles are given. Using the measures, find the values of x, y, z.

Answer»

i. ∠NET = 100° and ∠EMR = 140° 

∠EMN + ∠EMR = 180° 

∴ z +140° = 180°

∴ z = 180° -140° 

∴ z = 40°

ii. Also, ∠NET + ∠NEM = 180° [Angles in a linear pair] 

∴ 100° + y = 180° 

∴ y = 180° – 100° 

∴ y = 80°

iii. In ∆ENM, 

∴ ∠ENM + ∠NEM + ∠EMN = 180° [Sum of the measures of the angles of a triangle is 180°] 

∴ x + 80°+ 40°= 180° 

∴ x = 180° – 80° – 40° 

∴ x = 60° 

∴ x = 60°, y = 80°, z = 40°

480.

Using the information in the adjoining figure, find the measures of ∠a, ∠b and ∠c.

Answer»

i. ∠c + 100° = 180° [Angles in a linear pair]

∴ ∠c = 180° – 100° 

∠c = 80°

ii. ∠b = 70° [Vertically opposite angles] 

iii. ∠a + ∠b +∠c = 180° [Sum of the measures of the angles of a triangle is 180°] 

∠a + 70° + 80° = 1800 

∴ ∠a = 180° – 70° – 80° 

∴ ∠a = 30° 

∴ ∠a = 30°, ∠b = 70°,∠ c = 80°

481.

In the adjoining figure, line AB || line DE. Find the measures of ∠DRE and ∠ARE using given measures of some angles.

Answer»

i. ∠B AD = 70°, ∠DER = 40° [Given] 

line AB || line DE and seg AD is their transversal. 

∴ ∠EDA = ∠BAD [Alternate Angles] 

∴ ∠EDA = 70° ….(i) 

In ∆DRE, 

∠EDR + ∠DER + ∠DRE = 180° [Sum of the measures of the angles of a triangle is 180°] 

∴ 70°+ 40° +∠DRE = 180° [From (i) and D – R – A] 

∴ ∠DRE = 180° - 70° - 40° 

∴ ∠DRE = 70°

ii. ∠DRE + ∠ARE = 180° [Angles in a linear pair] 

∴ 70° + ∠ARE = 180° 

∴ ∠ARE = 180°- 70° 

∴ ∠ARE =110° 

∴ ∠DRE = 70°, ∠ARE = 110°

482.

Using the information in the adjoining figure, find the measures of ∠a, ∠b and ∠c.

Answer»

i. ∠c + 100° = 180° [Angles in a linear pair] 

∴ ∠c = 180° – 100° 

∴ ∠c = 80° 

ii. ∠b = 70° [Vertically opposite angles] 

iii. ∠a + ∠b +∠c = 180° [Sum of the measures of the angles of a triangle is 180°] 

∠a + 70° + 80° = 180° 

∴ ∠a = 180° – 70° – 80° 

∴ ∠a = 30° 

∴ ∠a = 30°, ∠b = 70°, ∠c = 80°

483.

In the adjoining figure, line AB || line CD and line PQ is the transversal. Ray PT and ray QT are bisectors of ∠BPQ and ∠PQD respectively. Prove that m ∠PTQ = 90°.

Answer»

Given: line AB || line CD and line PQ is the transversal. 

ray PT and ray QT are the bisectors of ∠BPQ and ∠PQD respectively. 

To prove: m ∠PTQ = 90°

Proof: ∠TPB = (1/2) ∠TPQ = ∠BPQ …(i) [Ray PT bisects ∠BPQ]

∠TQD = ∠TQP = (1/2) ∠PQD ….(ii)

[Ray QT bisects ∠PQD] 

line AB || line CD and line PQ is their transversal. [Given] 

∴∠BPQ + ∠PQD = 180° [Interior angles] 

∴ (1/2) (∠BPQ) + (1/2) (∠PQD) = (1/2) x 180° 

[Multiplying both sides by (1/2)] 

∠TPQ + ∠TQP = 90° 

In ∆PTQ, 

∠TPQ + ∠TQP + ∠PTQ = 180° [Sum of the measures of the angles of a triangle is 180°] 

∴ 90° + ∠PTQ = 180° [From (iii)] 

∴ ∠PTQ = 180° – 90° = 90° 

∴ m ∠PTQ = 90°

484.

In the adjoining figure, line AB || line CD and line PQ is the transversal.Ray PT and ray QT are bisectors of ∠BPQ and ∠PQD respectively. Prove that m ∠PTQ = 90°.Given: line AB || line CD and line PQ is the transversal. ray PT and ray QT are the bisectors of ∠BPQ and ∠PQD respectively. To prove: m∠PTQ = 90°

Answer»

∠TPB = ∠TPQ = 1/2∠BPQ …(i) [Ray PT bisects ∠BPQ] 

∠TQD = ∠TQP = 1/2∠PQD ….(ii) [Ray QT bisects ∠PQD] 

line AB || line CD and line PQ is their transversal.

[Given]

∴∠BPQ + ∠PQD = 180° [Interior angles] 

\(\frac{1}2\)(∠BPQ) + \(\frac{1}2\)(∠PQD) =\(\frac{1}2\) x 180° [Multiplying both sides by \(\frac{1}2\)

∠TPQ + ∠TQP = 90°

In ∆PTQ, 

∠TPQ + ∠TQP + ∠PTQ = 180° [Sum of the measures of the angles of a triangle is 180°] 

∴ 90° + ∠PTQ = 180° [From (iii)] 

∴ ∠PTQ = 180° – 90°

 = 90° 

∴ m∠PTQ = 90°

485.

In the given figure, if ar (ΔPOB) = 32 cm2, then ar(ΔQOA) is(A) 40 cm2(B) 50 cm2(C) 75 cm2(D) 150 cm2

Answer»

Correct option is: (B) 50 cm2

486.

In figure, ΔABC ~ ΔDEF. AB = 5 cm, area (ΔABC) = 20 cm2, area (ΔDEF) = 45 cm2 then DE =(A) 2.0 cm (B) 4.5 cm (C) 7.5 cm (D) 9.5 cm

Answer»

Correct option is: (C) 7.5 cm

487.

In ∆ ABC,(a) AB + BC &gt; AC(b) AB + BC &lt; AC(c) AB + AC &lt; BC(d) AC + BC &lt; AB

Answer»

(a) AB + BC > AC

The sum of the lengths of any two sides of a triangle is always greater than the length of the third side.

488.

In ∆PQR, PQ = 10 cm, QR = 12 cm, PR triangle. 8 cm. Find out the greatest and the smallest angle of the triangle.

Answer»

In ∆PQR, 

PQ = 10 cm, QR = 12 cm, PR = 8 cm [Given] 

Since, 12 > 10 > 8 

∴ QR > PQ > PR 

∴ ∠QPR > ∠PRQ > ∠PQR

 [Angle opposite to greater side is greater] 

∴ In ∆PQR, ∠QPR is the greatest angle and ∠PQR is the smallest angle.

489.

(i) In fig, if AB IICD , find the value of x.

Answer»

Diagonal of trapezium divide each other proportiona 

AO/OC=BO/OD 

4/4X-2=x+1/2x+4 

4x- 2x+4x-2=8x+16

 4x2+2x-2-8x-16=0 

4x2-6x-18=0 

2(2x- 3x-9)=0 

2x- 3x-9=0 

2x2-6x+3x-9=0 

2x(x-3)+3(x-3)=0 

(x-3)(2x+3)=0 

x-3=0 

x=3 

or,2x+3=0 

2x=-3 

x= -3/2 

x=-3/2 is not possible 

So x=3

490.

D, E and F are the points on sides BC, CA and AB respectively of Δ ABC such that AD bisects ∠A, BE bisects ∠B and CF bisects ∠C . If AB = 5 cm, BC = 8 cm and CA = 4 cm, determine AF, CE and BD.

Answer»

in⊿ ABC 

CF bisects ∠A 

∴ AF/FB=AE/AC 

AF/5-AF=4/8 

2AF=5-AF 

2AF+AF=5 

3AF=5 

AF=5/3 cm 

⊿ABC, BE bisects ∠B 

∴ AE/AC=AB/BC 

4-CE/CE=5/8 

5CE=32-8CE 

5CE+8CE=32 

13CE=32 

CE=32/13 cm 

Similarly 

BD/DC=AB/AC 

BD/8-BD=5/4 

4BD=40-5BD 

4BD+5BD=40 

9BD=40 

BD=40/9 cm

491.

In.fig AD bisects ∠A , AB = 12 cm, AC = 20 cm and BD = 5 cm, determine CD

Answer»

AD bisects ∠A 

∴ AB/AC=BD/CD 

12/20=5/CD 

CD =100/12 

CD=8.33 cm

492.

In Fig, check whether AD is the bisector of∠A of Δ ABC in each of the following: (i) AB = 5 cm, AC = 10 cm, BD = 1.5 cm and CD = 3.5 cm (ii) AB = 4 cm, AC = 6 cm, BD = 1.6 cm and CD = 2.4 cm (iii) AB = 8 cm, AC = 24 cm, BD = 6 cm and BC = 24 cm (iv) AB = 6 cm, AC = 8 cm, BD = 1.5 cm and CD = 2 cm (v) AB = 5 cm, AC = 12 cm, BD = 2.5 cm and BC = 9 cm

Answer»

(i) BD/DC=AB/AC 

1.5/3.5=5/10 

15/35*10/10=1/2 

3/7=1/2 

Not bisects 

(ii) 1.6/2.4=4/6 

16/24=2/3 

2/3=2/3 

bisects 

(iii) BD/CD=AB/AC 

BD/BC-BD=AB/AC 

BD/24-6=8/24 

6/18=1/3 

1/3=1/3

bisects 

(iv) 1.5/2= 6/8 

3/4=3/4 

bisects 

(v) BD/CD=AB/AC 

BD/BC-BD=AB/AC 

BD/9-2.5=5/12 

2.5/6.5=5/12 

5/13=5/12 

Not bisects

493.

If ∆PQR is congruent to ∆STU (Fig.), then what is the length of TU?(a) 5 cm (b) 6 cm (c) 7 cm (d) cannot be determined

Answer»

(b) 6 cm

From the question it is given that,

Δ PQR ≅ Δ STU

So,

PQR ↔ STU

∴ QR = TU

TU = 6 cm

494.

D and E are points on the sides AB and AC respectively of a ∆ABC such that DE || BC. Find the value of x, when AD = 4 cm, DB = (x – 4) cm, AE = 8 cm and EC = (3x – 19) cm.

Answer»

From figure, D and E are the points on the sides AB and AC respectively and DE || BC

then AD/DB = AE/EC

AD = 4 cm, DB = (x – 4) cm, AE = 8 cm and EC = (3x – 19) cm.

AD/DB = AE/EC

4/(x-4) = 8/(3x-19)

4(3x-19) = 8(x-4)

Solving, we get x = 11 cm

495.

D and E are points on the sides AB and AC respectively of a ∆ABC such that DE || BC. Find the value of x, when AD = x cm, DB = (x – 2) cm, AE = (x + 2) cm and EC = (x – 1) cm.

Answer»

From figure, D and E are the points on the sides AB and AC respectively and DE || BC

then AD/DB = AE/EC

AD = x cm, DB = (x – 2) cm, AE = (x + 2) cm and EC = (x – 1) cm.

x/(x-2) = (x+2)/(x-1)

x(x-1) = (x+2)(x-2)

Solving above equation, we get

x = 4 cm

496.

If ∆ABC and ∆DBC are on the same base BC, AB = DC and AC = DB (Fig.), then which of the following gives a congruence relationship?(a) ∆ ABC ≅ ∆ DBC (b) ∆ ABC ≅ ∆CBD(c) ∆ ABC ≅ ∆ DCB (d) ∆ ABC ≅ ∆BCD

Answer»

(c) ∆ ABC ≅ ∆ DCB

Consider the ΔABC and ΔDCB,

From the question it is given that, AB = DC and AC = DB

BC = BC … [because common side]

Therefore, ∆ ABC ≅ ∆ DCB

497.

Two triangles DEF and GHK are sucht that `angle D=48^(@) and angle H=57^(@)`. If `Delta DEF~Delta GHK` then find the measure of `angleF`.

Answer» Correct Answer - `75^(@)`
`angle D=48^(@), angle E= angle H=57^(@) [ :. Delta DEF~Delta GHK]`
`:. angleF=180^(@)-(angleD+angleE)=180^(@)-(48^(@)+57^(@))=75^(@)`
498.

`Delta ABC~ DeltaDEF` such that `ar (Delta ABC)= 36 cm^(2) and ar (Delta DEF) 49 cm^(2)` . Then, the ratio of their corresponding sides isA. `36:49`B. `6:7`C. `7:6`D. `sqrt(6):sqrt(7)`

Answer» Correct Answer - B
`((AB)/(DE))^(2)=(ar(Delta ABC))/(ar (Delta DEF))=(36)/(49)=((6)/(7))^(2) rArr (AB)/(DE)=(6)/(7)`
`:.` the ratio of the corresponding sides is `6:7`
499.

State the AA-similarity criterion.

Answer»

If two angles are correspondingly equal to the two angles of another triangle, then the two triangles are similar.

500.

State the AA-similarity criterion.

Answer»

In two triangles, if two angles of the one triangle are equal to the corresponding angles of the other triangle, then the triangles are similar.