InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The value of tan2 60° is :(A) 3(B) 1/3(C) 1(D) ∞ |
|
Answer» Answer is (A) 3 tan2 60° = (√3)2 = 3 |
|
| 2. |
The value of cos2 = 45° is :(A) 1/√2(B) √3/2(C) 1/2(D) 1/√3 |
|
Answer» Answer is (C) 1/2 cos 45° = (1/√2)2 = 1/2 |
|
| 3. |
If cosecθ = 2/√3 then value of θ is(A) π/4(B) π/3(C) π/2(D) π/6 |
|
Answer» Answer is (B) π/3 cosec θ = 2/√3 cosec 60° = cosec π/3 θ = π/3 |
|
| 4. |
If sec θ = √2, then value of θ will be :(A) π/8(B) π/6(C) π/4(D) π/3 |
|
Answer» Answer is (C) π/4 sec θ = √2 sec θ = sec 45° = sec π/4 θ = π/4 |
|
| 5. |
It tan θ = 1, then cos θ will be :(A) 1(B) 1/2(C) √3/2(D) 1/√2 |
|
Answer» Answer is (D) 1/√2 tan θ = 1 ⇒ tan θ = tan 45° ∴ θ = 45° cos 45° = 1/√2 |
|
| 6. |
If tan 3x = sin 45° cos 45° + sin 30°, then find value of x. |
|
Answer» tan 3x = sin 45° cos 45° + sin 30° ⇒ tan 3x = 1/√2 × 1/√2 + 1/2 ⇒ tan 3x = 1/2 + 1/2 ⇒ tan 3x = 1 ⇒ tan 3x = tan 45° ⇒ 3x = 45° ⇒ x = 15° |
|
| 7. |
Given sin α = 1/2 and cos β = 1/2, then value of (α + β) is :(A) 0°(B) 30°(C) 60°(D) 90° |
|
Answer» Answer is (D) 90° Given, ⇒ sin α = sin 30° α =30° and cos β = 1/2 ⇒ cos β = cos 60° β = 60° Now, α + β = 30° + 60° = 90° |
|
| 8. |
If sin θ = cos θ (θ = acute angle), then value of θ will be ;(A) 30°(B) 45°(C) 60°(D) 75° |
|
Answer» Answer is (B) 45° sin θ = cos θ ⇒ sinθ/cosθ = 1 ⇒ tan θ = 1 ⇒ tan θ = tan 45° ∴ θ = 45° |
|
| 9. |
Show that \(\frac{1}{1+cos(90° -θ)}+\frac1{1-cos(90° – θ)}\) = 2 cosec2 (90° – θ) |
|
Answer» L.H.S. = \(\frac1{1+sin\,θ}+ \frac1{1-sin\,\theta}\) = \(\frac{1-sin\,\theta+1+sin\,\theta}{(1+sin\,\theta)(1-sin\,\theta)}\) = \(\frac2{1-sin^2\,θ}= \frac2{cos^2\,\theta}\) = 2sec2 θ R.H.S.= 2 cosec2 (90° – θ) = 2 sec2 θ. ∴ L.H.S. = R.H.S |
|
| 10. |
The value of sin 0° + cos 30° – tan 45° + cosec 60° + cot 90° is equal to(a) \(\frac{5\sqrt3-6}{6}\)(b) \(\frac{-6+7\sqrt3}{6}\)(c) 0 (d) 2 |
|
Answer» (b) \(\frac{7\sqrt3-6}{6}.\) Given exp. = \(0+\frac{\sqrt3}{2}-1+\frac{2}{\sqrt3}+0\) = \(\frac{\sqrt3}{2}-1+\frac2{\sqrt3}=\frac{2\sqrt3+4}{2\sqrt3}=\frac{7-2\sqrt3}{2\sqrt3}\times\frac{\sqrt3}{\sqrt3}\) = \(\frac{7\sqrt3-6}{6}.\) |
|
| 11. |
Prove that cos2 0° – 2 cot2 30° + 3 cosec2 90° = 2(sec2 45° – tan2 60°) |
|
Answer» L.H.S. = cos2 0° – 2 cot2 30° + 3 cosec2 90° = (1)2 – 2(√3)2 + 3(1)2 = 1 – 2 × 3 + 3 = 1 – 6 + 3 = -2 R.H.S. = 2(sec2 45° – tan2 60°) = 2[(√2)2 – (√3)2] = 2(2 – 3) = 2 × (-1) = -2 Thus, L.H.S. = R.H.S. |
|
| 12. |
Prove that 4 cot2 45° – sec2 60° – sin2 30° = – 1/4 |
|
Answer» 4 cot2 45° – sec2 60° – sin2 30° = – 1/4 L.H.S. = 4 cot2 45° – sec2 60° – sin2 30° = 4(1)2 – (2)2 – \({ \left( \frac { 1 }{ 2 } \right) }^{ 2 }\) = 4 – 4 – 1/4 = –1/4 = R.H.S. Hence, L.H.S. = R.H.S. |
|
| 13. |
Prove that cos 60° = 2 cos2 30° – 1 |
|
Answer» RHS = 2 cos2 30° – 1 = 2(√3/2)2 - 1 = 2 x 3/4 - 1 = 3/2 - 1 = 1/2 L.H.S. = cos 60° = 1/2 ∴ L.H.S. = R.H.S. |
|
| 14. |
If A = B = 60°, then prove that :(i) cos(A – B) = cos A cos B + sin A sin B(ii) sin(A – B) = sin A cos B – cos A sin B |
|
Answer» (i) A = B = 60° (Given) LH.S. cos(A – B) = cos(60° – 60°) = cos 0° = 1 R.HS. cosA cosB + sinA sinB = cos 60° cos 60° + sin 60° sin 60° cos2 60° + sin2 60° = 1 [ sin2 θ + cos2 θ = 1] Thus, L.H.S. R.H.S. (ii) sin(A – B) = sin A cos B – cos A sin B L.H.S. sin(A – B) = sin(60° – 60°) = sin 0° = 0 R.H.S. sin A cos B – cos A sin B = sin 60° cos 60° – cos 60° sin 60° = 0 Thus, L.H.S. = R.H.S. |
|
| 15. |
Evaluate : cosec2 30° – 3 sec 60°. |
|
Answer» cosec2 30° – 3 sec 60° = (2)2 – 3(2) = 4 – 3 × 2 = 4 – 6 = -2 |
|
| 16. |
Evaluate : sin2 60° cot2 60°. |
|
Answer» sin2 60° cot2 60° = (√ 3/2)2 x (1/√ 3)2 = 3/4 x 1/3 = 1/4 |
|
| 17. |
Evaluate : 4 cos3 30° – 3 cos 30°. |
|
Answer» 4 cos3 30° – 3 cos 30° = 4 x (√3/2)3 - 3 x √3/2 = 4 x 3√3/8 - 3√3/2 = 3√3/2 - 3√3/2 = 0 |
|
| 18. |
sin (45° + θ) – cos (45° – θ) equals :(A) 2 cos θ(B) 0(C) 2 sinθ(D) 1 |
|
Answer» Answer is (B) 0 sin (45° + θ) – cos (45° – θ) = sin (45° + θ) – cos [90° – (45° + θ)] [∵ (45° – θ) = {90° – (45° + θ)}] = sin (45° + θ) – sin (45° + θ) [∵ cos (90° – θ) = sin θ] = 0 |
|
| 19. |
sin2 25° + sin2 65° is equal to (a) 0 (b) 2 sin2 25° (c) 2 cos2 65° (d) 1 |
|
Answer» (d) 1 sin2 25° + sin2 65° = sin2 (90° – 65°) + sin2 65° = cos2 65° + sin2 65° = 1. |
|
| 20. |
If sin (30° – θ) = cos (60° + ϕ), then (a) ϕ – θ = 30° (b) ϕ – θ = 0° (c) ϕ + θ = 60° (d) ϕ – θ = 60° |
|
Answer» (b) θ – ϕ = 0 sin (30° – θ) = cos (60° + ϕ) ⇒ cos (90° – (30° – θ) = cos (60° + ϕ) (∵ sin θ = cos (90° – θ)) ⇒ cos (60° + θ) = cos (60° + ϕ) ⇒ 60° + θ = 60° + ϕ ⇒ θ – ϕ = 0. |
|
| 21. |
If tan θ = 1 and sin θ = \(\frac1{\sqrt2}\), then the value of cos (θ + ϕ) is:(a) –1 (b) 0 (c) 1 (d) \(\frac{\sqrt3}{2}\) |
|
Answer» (b) 0 tan θ = 1 ⇒ tan θ = tan 45° ⇒ θ = 45° sin ϕ = \(\frac1{\sqrt2}\)⇒ sin ϕ = sin 45° ⇒ ϕ = 45° ∴ cos (θ + ϕ) = cos (45° + 45°) = cos 90° = 0 |
|
| 22. |
The value of sin2 (90° – θ) [1+ cot2 (90°– θ)] is(a) –1 (b) 0 (c) \(\frac12\)(d) 1 |
|
Answer» (d) 1 Given exp. = cos2 θ [1+ tan2 θ] = cos2 θ . sec2 θ = 1 [(∵ sin (90° - θ) = cos θ) (cot (90° - θ) = tan θ)] |
|
| 23. |
If 0° < θ < 90° and cos2 θ – sin2 θ = \(\frac12\) , then what is the value of θ?(a) 30° (b) 45° (c) 60° (d) 90° |
|
Answer» (a) 30° cos2 θ – sin2 θ = \(\frac12\) ⇒ (1–sin2 θ) – sin2 θ = \(\frac12\) ⇒ 1– 2 sin2 θ = \(\frac12\) ⇒ 2 sin2 θ = \(\frac12\) ⇒ sin2 θ = \(\frac14\) ⇒ sin θ = \(\frac12\) = sin 30° ⇒ θ = 30° |
|
| 24. |
The value of \(\frac{sin\,19°}{cos\,71°}+\frac{cos\,73°}{sin\,17°}\) is equal to :(a) 0 (b) 1 (c) 2 (d) \(\frac12\) |
|
Answer» (c) 2 Given exp. = \(\frac{sin(90°-71°)}{cos\,71°}+\frac{cox\,73°}{sin(90°-73°)}\) = \(\frac{cos\,71°}{cos\,71°}+\frac{cos\,73°}{cos\,73°}\) (∵sin (90° – θ) = cos θ) = 1 + 1 = 2. |
|
| 25. |
tan 26° – cot 64° equals(a) –1 (b) 1 (c) 0 (d) 2 |
|
Answer» (c) 0 tan 26° – cot 64° = tan (90° – 64°) – cot 64° = cot 64° – cot 64° = 0 (∵ tan (90° – θ)= cot θ) |
|
| 26. |
Find the value of x, if sin 2x = sin 60° cos 30° – cos 60° sin 30°(a) 20° (b) 15° (c) 30° (d) 45° |
|
Answer» (b) 15° sin 2x = \(\frac{\sqrt3}{2}\times\frac{\sqrt3}{2}-\frac12\times\frac12\) = \(\frac34-\frac14 = \frac12\) ∴ sin 2x = \(\frac12\) = sin 30° ⇒ 2x = 30° ⇒ x = 15°. |
|
| 27. |
The value of \(\frac12\) sin2 90° sin2 30° cos2 45° + 4 tan2 30° + \(\frac12\) sin2 90° – 2 cos2 90° is:(a) \(\frac{45}{24}\)(b) \(\frac{46}{24}\)(c) \(\frac{47}{24}\)(d) \(\frac{49}{24}\) |
|
Answer» (c) \(\frac{47}{24}\) Given exp. = \(\bigg(\frac12\bigg)^2\times\bigg(\frac1{\sqrt2}\bigg)^2+4\times\bigg(\frac1{\sqrt3}\bigg)^2+\frac12\times(1)^2-2\times0\) = \(\frac14\times\frac12+4\times\frac13+\frac12=\frac18+\frac43+\frac12=\frac{3+32+12}{24}=\frac{47}{24}\) |
|
| 28. |
Without using trigonometric tables, show that \(\frac{cos\,70°}{sin\,20°}\)+ cos 49° sin 41° = 2 |
|
Answer» \(\frac{cos\,70°}{sin\,20°}\)+ cos 49°cosec 41° = \(\frac{cos(90°-20°)}{sin\,20°}+\)cos(90° - 41°)cosec 41° = \(\frac{sin\,20°}{sin\,20°}+\) sin 41° x \(\frac1{sin\,41°}\) = 1 + 1 = 2. |
|
| 29. |
Find the value of \(x\), if tan 3\(x\) = sin 45° cos 45° + sin 30° |
|
Answer» Tan 3\(x\) = sin 45° cos 45° + sin 30° = \(\frac{1}{\sqrt2}\times\frac{1}{\sqrt2}+\frac12\) = \(\frac12+\frac12+1\) ⇒ tan 3\(x\) = tan 45° ⇒ 3\(x\) = 45° ⇒ \(x\) = 15° |
|
| 30. |
If \(x\) + y = 90°, then what is \(\sqrt{\text{cos}\,x\,cosec\,y\,-\,cos\,x\,sin\,y}\) equal to (a) cos \(x\) (b) sin \(x\) (c) \(\sqrt{cos\,x}\)(d) \(\sqrt{sin\,x}\) |
|
Answer» (b) sin x \(x\) + y = 90° ⇒ y = 90° – \(x\) ∴ \(\sqrt{\text{cos}\,x\,cosec\,y\,-\,cos\,x\,sin\,y}\) = \(\sqrt{cox\,x\,cosec\,(90°-x)-cox\,x\,sin(90°-x)}\) = \(\sqrt{cos\,x\,sec\,x\,-cos\,x\,cos\,x}\) = \(\sqrt{1-cos^2\,x}=\sqrt{sin^2\,x}=sin\,x\) |
|
| 31. |
Prove that : \(\frac43\) tan2 30° + sin2 60° – 3 cos2 60° + \(\frac34\) tan2 60° – 2 tan2 45° = \(\frac{25}{36}\) |
|
Answer» Given exp = \(\frac43\times\bigg(\frac{1}{\sqrt3}\bigg)^2+\bigg(\frac{\sqrt3}{2}\bigg)^2-3\times\big(\frac12\big)^2+\frac34\times(\sqrt3)^2-2\times(1)^2\) = \(\frac43\times\frac13+\frac34-\frac34+\frac94-2\) = \(\frac49+\frac94-2=\frac{16+81-72}{36}= \frac{25}{36}.\) |
|
| 32. |
If \(x\) cos 60° + y cos 0° = 3 and 4\(x\) sin 30° – y cot 45° = 2, then what is the value of \(x\)?(a) –1 (b) 0 (c) 1 (d) 2 |
|
Answer» (d) 2 \(x\) cos 60° + y cos θ° = 3 ⇒ \(x\) x \(\frac12\) + y x 1 = 3 ⇒ \(x\) + 2y = 6 ...(i) and 4\(x\) sin 30° – y cot 45° = 2 ⇒ 4\(x\) x \(\frac12\) - y x 1 = 2 ⇒ 2\(x\) – y = 2 ...(ii) Now solve for x and y |
|
| 33. |
If 2 sin2 x + cos2 45° = tan 45° and x is an acute angle, then the value of tan x is:(a) 1 (b) √3 (c) \(\frac1{\sqrt3}\)(d) 3 |
|
Answer» (c) \(\frac1{\sqrt3}\) 2 sin2 \(x\) + cos2 45° = tan 45° ⇒ 2 sin2 \(x\) + \(\bigg(\frac1{\sqrt2}\bigg)^2\) = 1 ⇒ 2 sin2 \(x\) = \(1-\frac12=\frac12\) ⇒ sin2 \(x\) = \(\frac14\) ⇒ sin \(x\) = \(\frac12\) = sin 30° ⇒ \(x\) = 30° ∴ tan \(x\) = tan 30° = \(\frac1{\sqrt3}\). |
|
| 34. |
The value of a sin 0° + b cos 90° + c tan 45° is: (a) a + b + c (b) b + c (c) a + c (d) c |
|
Answer» (d) c a sin 0° + b cos 90° + c tan 45° = a × 0 + b × 0 + c × 1 = c. |
|
| 35. |
\(\frac{1-tan^2\,45°}{1+tan^2\,45°}\) = (a) tan 90° (b) 1 (c) sin 45° (d) 0 |
|
Answer» (d) 0 \(\frac{1-tan^2\,45°}{1+tan^2\,45°}\) = \(\frac{1-1}{1+1}= \frac02=0\) (∵ tan 45° = 1) |
|
| 36. |
If \(x\) tan 30° = \(\frac{\text{sin 30° + cos 60°}}{\text{tan 60° + sin 60°}}\), then the value of \(x\) is :(a) \(\frac23\)(b) \(\frac2{\sqrt3}\)(c) \(\frac2{3\sqrt3}\)(d) \(\frac32\) |
|
Answer» (a) \(\frac23\) \(x\) tan 30° = \(\frac{\text{sin 30° + cos 60°}}{\text{tan 60° + sin 60°}}\) = \(\frac{\frac12+\frac12}{\sqrt3+\frac{\sqrt3}{2}}=\frac{1}{\frac{2\sqrt3+\sqrt3}{2}}=\frac{2}{3\sqrt3}\) \(x\times\frac1{\sqrt3}=\frac{2}{3\sqrt3}\) ⇒ \(x\) = \(\frac{2\sqrt3}{3\sqrt3}=\frac23.\) |
|
| 37. |
If sin 3θ = cos (θ – 2°) where 3θ and (θ – 2°) are acute angles, what is the value of θ?(a) 22° (b) 23° (c) 24° (d) 25° |
|
Answer» (b) 23° sin 3θ = cos (θ – 2°) ⇒ cos (90° – 3θ ) = cos (θ – 2°) ⇒ 90° – 3θ = θ – 2° ⇒ 4θ = 92° ⇒ θ = 23°. |
|