Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

The value of tan2 60° is :(A) 3(B) 1/3(C) 1(D) ∞

Answer»

Answer is (A) 3

tan2 60° = (√3)2 = 3

2.

The value of cos2 = 45° is :(A) 1/√2(B) √3/2(C) 1/2(D) 1/√3

Answer»

Answer is (C) 1/2

cos 45° = (1/√2)2 = 1/2

3.

If cosecθ = 2/√3 then value of θ is(A) π/4(B) π/3(C) π/2(D) π/6

Answer»

Answer is (B) π/3

cosec θ = 2/√3

cosec 60° = cosec π/3

θ = π/3

4.

If sec θ = √2, then value of θ will be :(A) π/8(B) π/6(C) π/4(D) π/3

Answer»

Answer is (C) π/4

sec θ = √2

sec θ = sec 45° = sec π/4

θ = π/4

5.

It tan θ = 1, then cos θ will be :(A) 1(B) 1/2(C) √3/2(D) 1/√2

Answer»

Answer is (D) 1/√2

tan θ = 1

⇒ tan θ = tan 45°

∴ θ = 45°

cos 45° = 1/√2

6.

If tan 3x = sin 45° cos 45° + sin 30°, then find value of x.

Answer»

tan 3x = sin 45° cos 45° + sin 30°

⇒ tan 3x = 1/√2 × 1/√2 + 1/2

⇒ tan 3x = 1/2 + 1/2

⇒ tan 3x = 1

⇒ tan 3x = tan 45°

⇒ 3x = 45°

⇒ x = 15°

7.

Given sin α = 1/2 and cos β = 1/2, then  value of (α + β) is :(A) 0°(B) 30°(C) 60°(D) 90° 

Answer»

Answer is (D) 90°

Given,
sin α = 1/2

⇒ sin α = sin 30°

α =30°

and cos β = 1/2

⇒ cos β = cos 60°

β = 60°

Now, α + β = 30° + 60° = 90°

8.

If sin θ = cos θ (θ = acute angle), then value of θ will be ;(A) 30°(B) 45°(C) 60°(D) 75°

Answer»

Answer is (B) 45°

sin θ = cos θ

⇒ sinθ/cosθ = 1

⇒ tan θ = 1

⇒ tan θ = tan 45°

∴ θ = 45°

9.

Show that \(\frac{1}{1+cos(90° -θ)}+\frac1{1-cos(90° – θ)}\) = 2 cosec2 (90° – θ)

Answer»

L.H.S. = \(\frac1{1+sin\,θ}+ \frac1{1-sin\,\theta}\) = \(\frac{1-sin\,\theta+1+sin\,\theta}{(1+sin\,\theta)(1-sin\,\theta)}\)

\(\frac2{1-sin^2\,θ}= \frac2{cos^2\,\theta}\) = 2sec2 θ

R.H.S.= 2 cosec2 (90° – θ) = 2 sec2 θ. 

∴ L.H.S. = R.H.S

10.

The value of sin 0° + cos 30° – tan 45° + cosec 60° + cot 90° is equal to(a) \(\frac{5\sqrt3-6}{6}\)(b) \(\frac{-6+7\sqrt3}{6}\)(c) 0 (d) 2

Answer»

(b) \(\frac{7\sqrt3-6}{6}.\)

Given exp. = \(0+\frac{\sqrt3}{2}-1+\frac{2}{\sqrt3}+0\)

\(\frac{\sqrt3}{2}-1+\frac2{\sqrt3}=\frac{2\sqrt3+4}{2\sqrt3}=\frac{7-2\sqrt3}{2\sqrt3}\times\frac{\sqrt3}{\sqrt3}\)

\(\frac{7\sqrt3-6}{6}.\)

11.

Prove that cos2 0° – 2 cot2 30° + 3 cosec2 90° = 2(sec2 45° – tan2 60°)

Answer»

L.H.S. = cos2 0° – 2 cot2 30° + 3 cosec2 90°

= (1)2 – 2(√3)2 + 3(1)2

= 1 – 2 × 3 + 3

= 1 – 6 + 3 = -2

R.H.S. = 2(sec2 45° – tan2 60°)

= 2[(√2)2 – (√3)2]

= 2(2 – 3) = 2 × (-1) = -2

Thus, L.H.S. = R.H.S.

12.

Prove that 4 cot2 45° – sec2 60° – sin2 30° = – 1/4

Answer»

4 cot2 45° – sec2 60° – sin2 30° = – 1/4

L.H.S. = 4 cot2 45° – sec2 60° – sin2 30°

= 4(1)2 – (2)2 – \({ \left( \frac { 1 }{ 2 } \right) }^{ 2 }\)

= 4 – 4 – 1/4 = –1/4

= R.H.S.

Hence, L.H.S. = R.H.S.

13.

Prove that cos 60° = 2 cos2 30° – 1

Answer»

RHS = 2 cos2 30° – 1

= 2(√3/2)2 - 1

= 2 x 3/4 - 1

= 3/2 - 1 = 1/2

L.H.S. = cos 60° = 1/2

∴ L.H.S. = R.H.S.

14.

If A = B = 60°, then  prove that :(i) cos(A – B) = cos A cos B + sin A sin B(ii) sin(A – B) = sin A cos B – cos A sin B

Answer»

(i) A = B = 60° (Given)

LH.S. cos(A – B) = cos(60° – 60°)

= cos 0° = 1

R.HS. cosA cosB + sinA sinB

= cos 60° cos 60° + sin 60° sin 60°

cos2 60° + sin2 60° = 1 [ sin2 θ + cos2 θ = 1]

Thus, L.H.S. R.H.S.

(ii) sin(A – B) = sin A cos B – cos A sin B

L.H.S. sin(A – B) = sin(60° – 60°)

= sin 0° = 0

R.H.S. sin A cos B – cos A sin B

= sin 60° cos 60° – cos 60° sin 60°

= 0

Thus, L.H.S. = R.H.S.

15.

Evaluate : cosec2 30° – 3 sec 60°.

Answer»

cosec2 30° – 3 sec 60°

= (2)2 – 3(2)

= 4 – 3 × 2 = 4 – 6

= -2

16.

Evaluate : sin2 60° cot2 60°.

Answer»

sin2 60° cot2 60°

= (√ 3/2)2 x (1/√ 3)2

= 3/4 x 1/3

= 1/4

17.

Evaluate : 4 cos3 30° – 3 cos 30°.

Answer»

4 cos3 30° – 3 cos 30°

= 4 x (√3/2)3 - 3 x √3/2

= 4 x 3√3/8 - 3√3/2

= 3√3/2 - 3√3/2 = 0

18.

sin (45° + θ) – cos (45° – θ) equals :(A) 2 cos θ(B) 0(C) 2 sinθ(D) 1

Answer»

Answer is (B) 0

sin (45° + θ) – cos (45° – θ)

= sin (45° + θ) – cos [90° – (45° + θ)] [∵ (45° – θ) = {90° – (45° + θ)}]

= sin (45° + θ) – sin (45° + θ) [∵ cos (90° – θ) = sin θ]

= 0

19.

sin2 25° + sin2 65° is equal to (a) 0 (b) 2 sin2 25° (c) 2 cos2 65° (d) 1

Answer»

(d) 1

sin2 25° + sin2 65° = sin2 (90° – 65°) + sin2 65° 

= cos2 65° + sin2 65° = 1.

20.

If sin (30° – θ) = cos (60° + ϕ), then (a) ϕ – θ = 30° (b) ϕ – θ = 0° (c) ϕ + θ = 60° (d) ϕ – θ = 60°

Answer»

(b) θ – ϕ = 0

sin (30° – θ) = cos (60° + ϕ

⇒ cos (90° – (30° – θ) = cos (60° + ϕ)           (∵ sin θ = cos (90° – θ)) 

⇒ cos (60° + θ) = cos (60° + ϕ) 

⇒ 60° + θ = 60° + ϕ ⇒ θ – ϕ = 0.

21.

If tan θ = 1 and sin θ = \(\frac1{\sqrt2}\), then the value of cos (θ + ϕ) is:(a) –1 (b) 0 (c) 1 (d) \(\frac{\sqrt3}{2}\)

Answer»

(b) 0

tan θ = 1 ⇒ tan θ = tan 45° ⇒ θ = 45° 

sin ϕ = \(\frac1{\sqrt2}\)⇒ sin ϕ = sin 45° ⇒ ϕ = 45° 

∴ cos (θ + ϕ) = cos (45° + 45°) 

= cos 90° = 0

22.

The value of sin2 (90° – θ) [1+ cot2 (90°– θ)] is(a) –1 (b) 0 (c) \(\frac12\)(d) 1

Answer»

(d) 1

Given exp. = cos2 θ [1+ tan2 θ] 

= cos2 θ . sec2 θ = 1

[(∵ sin (90° - θ) = cos θ) (cot (90° - θ) = tan θ)]

23.

If 0° < θ < 90° and cos2 θ – sin2 θ = \(\frac12\) , then what is the value of θ?(a) 30° (b) 45° (c) 60° (d) 90°

Answer»

(a) 30°

cos2 θ – sin2 θ = \(\frac12\)

⇒ (1–sin2 θ) – sin2 θ = \(\frac12\)

⇒ 1– 2 sin2 θ = \(\frac12\)

⇒ 2 sin2 θ = \(\frac12\) ⇒ sin2 θ = \(\frac14\)

⇒ sin θ = \(\frac12\) = sin 30° ⇒ θ = 30°

24.

The value of \(\frac{sin\,19°}{cos\,71°}+\frac{cos\,73°}{sin\,17°}\) is equal to :(a) 0 (b) 1 (c) 2 (d) \(\frac12\)

Answer»

(c) 2

Given exp.

\(\frac{sin(90°-71°)}{cos\,71°}+\frac{cox\,73°}{sin(90°-73°)}\)

\(\frac{cos\,71°}{cos\,71°}+\frac{cos\,73°}{cos\,73°}\)            (∵sin (90° – θ) = cos θ)

= 1 + 1 = 2.

25.

tan 26° – cot 64° equals(a) –1 (b) 1 (c) 0 (d) 2

Answer»

(c) 0

tan 26° – cot 64° = tan (90° – 64°) – cot 64° 

= cot 64° – cot 64° = 0 (∵ tan (90° – θ)= cot θ)

26.

Find the value of x, if sin 2x = sin 60° cos 30° – cos 60° sin 30°(a) 20° (b) 15° (c) 30° (d) 45°

Answer»

(b) 15°

sin 2x = \(\frac{\sqrt3}{2}\times\frac{\sqrt3}{2}-\frac12\times\frac12\)

\(\frac34-\frac14 = \frac12\)

∴  sin 2x = \(\frac12\) = sin 30° ⇒ 2x = 30° ⇒ x = 15°. 

27.

The value of \(\frac12\) sin2 90° sin2 30° cos2 45° + 4 tan2 30° + \(\frac12\) sin2 90° – 2 cos2 90° is:(a) \(\frac{45}{24}\)(b) \(\frac{46}{24}\)(c) \(\frac{47}{24}\)(d) \(\frac{49}{24}\)

Answer»

(c) \(\frac{47}{24}\)

Given exp.

\(\bigg(\frac12\bigg)^2\times\bigg(\frac1{\sqrt2}\bigg)^2+4\times\bigg(\frac1{\sqrt3}\bigg)^2+\frac12\times(1)^2-2\times0\)

\(\frac14\times\frac12+4\times\frac13+\frac12=\frac18+\frac43+\frac12=\frac{3+32+12}{24}=\frac{47}{24}\)

28.

Without using trigonometric tables, show that \(\frac{cos\,70°}{sin\,20°}\)+ cos 49° sin 41° = 2

Answer»

  \(\frac{cos\,70°}{sin\,20°}\)+ cos 49°cosec 41° = \(\frac{cos(90°-20°)}{sin\,20°}+\)cos(90° - 41°)cosec 41°

\(\frac{sin\,20°}{sin\,20°}+\) sin 41° x \(\frac1{sin\,41°}\) = 1 + 1 = 2.

29.

Find the value of \(x\), if tan 3\(x\) = sin 45° cos 45° + sin 30°

Answer»

Tan 3\(x\) = sin 45° cos 45° + sin 30°

\(\frac{1}{\sqrt2}\times\frac{1}{\sqrt2}+\frac12\) = \(\frac12+\frac12+1\)

⇒ tan 3\(x\) = tan 45° ⇒ 3\(x\) = 45° ⇒ \(x\) = 15°

30.

If \(x\) + y = 90°, then what is \(\sqrt{\text{cos}\,x\,cosec\,y\,-\,cos\,x\,sin\,y}\) equal to (a) cos \(x\) (b) sin \(x\) (c) \(\sqrt{cos\,x}\)(d) \(\sqrt{sin\,x}\)

Answer»

(b) sin x

\(x\) + y = 90° ⇒ y = 90° – \(x\)

∴ \(\sqrt{\text{cos}\,x\,cosec\,y\,-\,cos\,x\,sin\,y}\)

\(\sqrt{cox\,x\,cosec\,(90°-x)-cox\,x\,sin(90°-x)}\)

\(\sqrt{cos\,x\,sec\,x\,-cos\,x\,cos\,x}\)

\(\sqrt{1-cos^2\,x}=\sqrt{sin^2\,x}=sin\,x\)

31.

Prove that : \(\frac43\) tan2 30° + sin2 60° – 3 cos2 60° + \(\frac34\) tan2 60° – 2 tan2 45° = \(\frac{25}{36}\)

Answer»

Given exp = \(\frac43\times\bigg(\frac{1}{\sqrt3}\bigg)^2+\bigg(\frac{\sqrt3}{2}\bigg)^2-3\times\big(\frac12\big)^2+\frac34\times(\sqrt3)^2-2\times(1)^2\)

\(\frac43\times\frac13+\frac34-\frac34+\frac94-2\)

\(\frac49+\frac94-2=\frac{16+81-72}{36}= \frac{25}{36}.\)

32.

If \(x\) cos 60° + y cos 0° = 3 and 4\(x\) sin 30° – y cot 45° = 2, then what is the value of \(x\)?(a) –1 (b) 0 (c) 1 (d) 2

Answer»

(d) 2

\(x\) cos 60° + y cos θ° = 3

⇒ \(x\) x \(\frac12\) + y x 1 = 3

⇒ \(x\) + 2y = 6                     ...(i)

and 4\(x\) sin 30° – y cot 45° = 2

⇒ 4\(x\) x \(\frac12\) - y x 1 = 2

⇒ 2\(x\) – y = 2                  ...(ii) 

Now solve for x and y

33.

If 2 sin2 x + cos2 45° = tan 45° and x is an acute angle, then the value of tan x is:(a) 1 (b) √3 (c) \(\frac1{\sqrt3}\)(d) 3

Answer»

(c)  \(\frac1{\sqrt3}\)

2 sin2 \(x\) + cos2 45° = tan 45° 

⇒ 2 sin\(x\) + \(\bigg(\frac1{\sqrt2}\bigg)^2\) = 1 

⇒ 2 sin\(x\)  =  \(1-\frac12=\frac12\)

 ⇒ sin\(x\) = \(\frac14\) ⇒ sin \(x\) = \(\frac12\) = sin 30° ⇒ \(x\) = 30°

∴ tan \(x\) = tan 30° = \(\frac1{\sqrt3}\).

34.

The value of a sin 0° + b cos 90° + c tan 45° is: (a) a + b + c (b) b + c (c) a + c (d) c

Answer»

(d) c

a sin 0° + b cos 90° + c tan 45° 

= a × 0 + b × 0 + c × 1 = c.

35.

\(\frac{1-tan^2\,45°}{1+tan^2\,45°}\) = (a) tan 90° (b) 1 (c) sin 45° (d) 0

Answer»

(d) 0 

\(\frac{1-tan^2\,45°}{1+tan^2\,45°}\) = \(\frac{1-1}{1+1}= \frac02=0\)            (∵ tan 45° = 1)

36.

If \(x\) tan 30° = \(\frac{\text{sin 30° + cos 60°}}{\text{tan 60° + sin 60°}}\), then the value of \(x\) is :(a) \(\frac23\)(b) \(\frac2{\sqrt3}\)(c) \(\frac2{3\sqrt3}\)(d) \(\frac32\)

Answer»

(a) \(\frac23\)

 \(x\) tan 30° = \(\frac{\text{sin 30° + cos 60°}}{\text{tan 60° + sin 60°}}\)

\(\frac{\frac12+\frac12}{\sqrt3+\frac{\sqrt3}{2}}=\frac{1}{\frac{2\sqrt3+\sqrt3}{2}}=\frac{2}{3\sqrt3}\)

\(x\times\frac1{\sqrt3}=\frac{2}{3\sqrt3}\) ⇒ \(x\) = \(\frac{2\sqrt3}{3\sqrt3}=\frac23.\)

37.

If sin 3θ = cos (θ – 2°) where 3θ and (θ – 2°) are acute angles, what is the value of θ?(a) 22° (b) 23° (c) 24° (d) 25°

Answer»

(b) 23°

sin 3θ = cos (θ – 2°) 

⇒ cos (90° – 3θ ) = cos (θ – 2°) 

⇒ 90° – 3θ = θ – 2° 

⇒ 4θ = 92° ⇒ θ = 23°.