

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
51. |
Simplify sec A (1 – sin A) (sec A + tan A) |
Answer» L.H.S. = sec A (1 – sin A) (sec A + tan A) = (sec A – sec A . sin A) (sec A + tan A) = (sec A – \(\frac{1}{cos\, A}\) . sin A) (sec A + tan A) = (sec A – tan A) (sec A + tan A) = sec2 A – tan2 A [∵ sec2 A – tan2 A = 1] = 1 |
|
52. |
Does sinθ 5/3 exist for an acute angle θ? |
Answer» Given ‘θ’ is acute => 0° < θ < 90° So sin 0° = 0 and sin 90° = 1 So for 0° < θ < 90°, sin θ value lies in between zero and one. So sin θ value cannot be greater than 1. So sinθ = 5/3 does not exist. |
|
53. |
Prove the following: \(\frac {cosec(90°-x)\, sin(180°-x)\, cot(360°-x)}{sec(180°+x)\, tan(90°+x)\,sin(-x)} = 1\)cosec(90°-x) sin (180°-x) cot(360°-x)/ sec(180°+x) tan(90°+x) sin(-x)=1 |
Answer» L.H.S = \(\frac {cosec(90°-x)\, .sin(180°-x)\, .cot(360°-x)}{sec(180°+x)\, .tan(90°+x)\,.sin(-x)}\) = \(\frac{sec\,x\,sin\,x(-cot\,x)}{-sec\,x).(-cot\,x).(-sin\,x)}\) = 1 = R.H.S |
|
54. |
Among sin 90°, cos 90°, tan 90°, cot 90°, sec 90° and cosec 90°; which is/are not defined ? |
Answer» sin 90° =1 cos 90° = 0 tan 90° = not defined cot 90° = 0 sec 90° = not defined cosec 90° = 1 ∴ tan 90°, sec 90° are not defined. |
|
55. |
Evaluate the following: (sec2 θ – 1) (cosec2 θ – 1) |
Answer» Given (sec2 θ – 1) (cosec2 θ – 1) = tan2 θ × cot2 θ [∵ sec2 θ – tan2 θ = 1; cosec2 θ – cot2 θ = 1] = tan2 θ × \(\frac{1}{tan^2\,θ}\) = 1 |
|
56. |
If tanθ = \(\frac{24}7\), find that sinθ + cosθ, |
Answer» tanθ = \(\frac{24}7\) ⇒ sinθ = \(\frac{24}{25}\) and cosθ = \(\frac{7}{25}\) ∴ sinθ + cosθ = \(\frac{24}{25}\) + \(\frac{7}{25}\) = \(\frac{31}{25}\) |
|
57. |
If sin A = \(\frac{3}{5}\), cos B = \(\frac{4}{5}\) find sin(A + B) and cos(A – B). Where A and B are acute angles. |
Answer» Given sin A = \(\frac{3}{5}\), cos B = \(\frac{4}{5}\) ⇒ cos A = \(\frac{4}{5}\) & sin B = \(\frac{3}{5}\) ∵ sin2A + cos2A = 1 (i) sin(A + B) = sinA cosB + cosA sinB = \(\frac{3}{5}\). \(\frac{4}{5}\) + \(\frac{4}{5}\).\(\frac{3}{5}\) = \(\frac{24}{25}\) (ii) cos(A – B) = cosAcosB + sinA sinB = \(\frac{4}{5}\). \(\frac{4}{5}\) + \(\frac{3}{5}\) .\(\frac{3}{5}\) = \(\frac{16}{25}\) + \(\frac{9}{25}\) = \(\frac{25}{25}\) = 1 |
|
58. |
If x= r cosα sinβ, y = r sinα sinβ and z = r cosα then prove that x2 + y2 + z2 = r2. |
Answer» Taking LHS = x2 + y2 + z2 Putting the values of x, y and z , we get =(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2 = r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α Taking common r2 sin2 α , we get = r2 sin2α (cos2β + sin2 β) + r2cos2 α = r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1] =r2 ( sin2 α + cos2 α) = r2 [∵ cos2 α + sin2 α = 1] = RHS Hence Proved |
|
59. |
With the information given in the figure (i) Write `sec theta` and `sec^(2) theta`. (ii) Write `tan theta` and `tan^(2) theta` (iii) Find `1+tan^(2) theta,` compare it with `sec^(2) theta` and write your conclusion. |
Answer» Correct Answer - (i) `sec theta=(AC)/(BC),sec^(2) theta=(AC^(2))/(BC^(2))` (i) `tan theta=(AB)/(BC),tan^(2) theta=(AB^(2))/(BC^(2))` (iii) `1+tan^(2)theta=(AC^(2))/(BC^(2)),sec^(2)theta=1+tan^(2)theta` |
|
60. |
From a top of a lighthouse, an observer looks at the ship and find the angle of depression to be `45^(@)`. If the height of the lighthouse is `1000m`, then how far is that ship from the lighthouse. |
Answer» Correct Answer - `100m` |
|
61. |
Prove that: i. (sin2 θ / cos θ) + cos θ = sec θii. cos2 θ (1+ tan2 θ) = 1 |
Answer» i. L.H.S = (sin2 θ/cos θ) + cos θ = (sin2 θ/cos2 θ)/cos θ = 1/cos θ ....[∵ sin2 θ + cos2 θ = 1] = sec θ = R.H.S ∵ (sin2 θ/cos θ) + cos θ = sec θ ii. L.H.S. = cos2 θ (1 + tan2 θ) = cos2 θ sec2 θ …[∵ 1 + tan2 θ = sec2 θ] = cos2 θ . 1/cos2 θ ....[∴ sec θ = 1/cos θ] = 1 = R.H.S ∴ cos2 θ (1 + tan2 θ) = 1 |
|
62. |
If `sin theta=11/61`, ffind the value of `cos theta` using trigonometric identity. |
Answer» `sin theta=11/61`………(Given) `sin^(2) theta+cos^(2) theta=1`………(Identity) `:.(11/61)^(2)+cos^(2) theta=1` `:.cos^(2) theta=1-(11/61)^(2)` `:.cos^(2) theta=1-121/3721` `:.cos^(2) theta=(3721-121)/3721` `:.cos^(2) theta=3600/3721` `:.cos theta=60/61` .............(Taking square roots of bothh the sides) `cos theta=60/61` |
|
63. |
Two buildings are facing each other on a road of width 5m. From the to of the first building which is `2m` high, the angle of elevation of the top of the second is found to be `30^(@)`. What is the height of the second building? |
Answer» Correct Answer - `(6+5sqrt(3))/3m`. |
|
64. |
Write the values of the following trigonometric ratios.i. sin 30° = 1/[ ___ ]ii. cos 30° = [ ___ ]/[ ___ ]iii. tan 30° = [ ___ ]/[ ___ ]iv. sin 60° = [ ___ ]/[ ___ ]v. cos 45° = [ ___ ]/[ ___ ]vi. tan 45° = [ ___ ] |
Answer» i. sin 30° = 1/2 ii. cos 30° = √3/2 iii. tan 30° = 1/√3 iv. sin 60° = √3/2 v. cos 45° = 1/√2 vi. tan 45° = 1 |
|
65. |
If `sintheta=3/5`, find thevalues of other trigonometric ratios. |
Answer» Correct Answer - `cos theta=4/5, tan theta=3/4, cosec theta=5/3, sec theta=5/4, cot thea=4/3.` |
|
66. |
Write the values of the following trigonometric ratios.(i) Sin 30° = 1/... (ii) cos30° = .... / .... (iii) tan30° = .... / .... (iv) sin60° = .... / .... (v) cos45° = ..../.... (vi) tan45° = .... |
Answer» (i) Sin 30° = 1/2 (ii) cos30° = √3/2 (iii) tan30° = 1/√3 (iv) sin60° = √3/2 (v) cos45° = 1/√2 (vi) tan45° = 1 |
|
67. |
Complete the relations in ratios given below.(i) Sinθ/cosθ =- ..... (ii) Sinθ = cos (90 - ....)(iii) cosθ = sinθ (90 - ....) (iv) tanθ x tan (90 - θ) = ..... |
Answer» i. sinθ/cosθ = [tanθ] ii. sinθ = cos (90 – θ) iii. cosθ = (90 – θ) iv. tanθ × tan (90 – θ) = 1 |
|
68. |
If `tan theta=2`, find the values of other trigonometric ratios. |
Answer» Correct Answer - `sin theta=2/(sqrt(5)), cos theta=1/(sqrt(5)), cosec theta=(sqrt(5))/2, sec theta=(sqrt(5))/1, cot theta=1/2`. |
|
69. |
Express cos 68° + tan 76° in terms of the angles between 0° and 45° |
Answer» cos 68° + tan 76° = cos (90° - 22°) + tan(90° - 22°) + tan (90° - 14°) = sin 22° + cot 14° [cos (90° - θ) = sin θ and tan (90° - θ) = cot θ] |
|
70. |
Find the value of tan245° + cot230°. |
Answer» tan2 45° + cot2 30° = (1)2 + (√3)2 = 1 + 3 = 4 |
|
71. |
Find the value of x, if 2 sin x = √3 |
Answer» 2 sin x = √3 sin x = \(\frac{\sqrt{3}}{2}\) sin x = sin 60° ∴ x = 60° |
|
72. |
If sin 3A = cos(A – 26°), where 3A is an acute angle, find the value of A. |
Answer» sin 3A = cos (A-26°) …(i) We know that Sin θ = cos (90° - θ) So, Eq. (i) become Cos (90° - 3A) = cos (A -26°) On Equating both the sides, we get 90° - 3A = A – 26° ⇒ -3A - A = -26° -90° ⇒ -4A = -116° ⇒ A = 29° |
|
73. |
Evaluate cos 76° – sin 14° |
Answer» cos 76° – sin 14° We can write cos 76 as cos (90 – 14) ∴ cos 76 = cos (90 – 14) = sin 14 (∵ cos (90 – θ) = sin θ) ∴ cos 76° – sin 14° = sin 14° – sin 14° = 0 |
|
74. |
The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is(A) – 1 (B) 0 (C) 1 (D) 3/ 2 |
Answer» (B) 0 According to the question, We have to find the value of the equation, cosec(75°+θ) – sec(15°-θ) – tan(55°+θ) + cot(35°-θ) = cosec[90°-(15°-θ)] – sec(15°-θ) – tan(55°+θ) + cot[90°-(55°+θ)] Since, cosec (90°- θ) = sec θ And, cot(90°-θ) = tan θ We get, = sec(15°-θ) – sec(15°-θ) – tan(55°+θ) + tan(55°+θ) = 0 |
|
75. |
Find the value of \(\frac{cos63°20'}{sin26°40'}\) |
Answer» \(\frac{cos63°20'}{sin26°40'}\) = \(\frac{cos63°20'}{cos63°20'}\) = 1 |
|
76. |
If \(\frac{tan\,26°+tan\,19°}{x(1-tan\,26°tan\,19°)}\) = cos 60° then the value of x is(a) 1 (b) √2 (c) 2 (d) √3 |
Answer» (c) 2 \(\frac{tan\,26°+tan\,19°}{x(1-tan\,26°tan\,19°)}\) = cos 60° = \(\frac{tan\,26°+tan\,19°}{1-tan\,26°tan\,19°}\) = x cos 60° = tan (26° + 19°) = \(x\) x \(\frac12\) \(\bigg[∵ tan (A + B)=\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\bigg]\) = tan 45° = \(\frac{x}{2}\) ⇒ \(\frac{x}{2}\) = 1 ⇒ x = 2. |
|
77. |
Find the value of cos 19° 59′ + tan 12° 12′ + sin 49° 20′. |
Answer» cos 19° 59′ + tan 12° 12′ + sin 49° 20′ = 0 |
|
78. |
Find the value of cot 15°.cot 30°.cot 45°.cot 60°.cot 75° |
Answer» cot(90° – 75) cot(90° – 60°) cot 45° cot 60° cot 75° = tan 75° tan 60° (1) cot 60° cot 75° = 1 |
|
79. |
Evaluate : sin[π/3-sin-1(-1/2)] |
Answer» sin[π/3-sin-1(-1/2)] =sin[π/3-(-π/6)] =sin π/2=1 |
|
80. |
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B. |
Answer» In a right angled triangle ABC, cos A = \(\frac{AC}{AB}\) and cos B = \(\frac{BC}{AB}\) ∵ cos A = cos B \(\frac{AC}{AB}\) = \(\frac{BC}{AB}\) ∴ AC = BC We have, opposite sides of equal angles are equal. Therefore, In a right angled triangle ABC ∠A = ∠B = 45° |
|
81. |
If tan2A = cot(A – 18°), where 2A is an acute angle, find the value of A. |
Answer» Answer: We have |
|
82. |
If A, B and C are interior angles of a triangle ABC, then show that sin((B+C)/2) = cosA/2 |
Answer» Answer In a triangle, sum of all the interior angles A + B + C = 180° ⇒ B + C = 180° - A ⇒ (B+C)/2 = (180°-A)/2 ⇒ (B+C)/2 = (90°-A/2) ⇒ sin (B+C)/2 = sin (90°-A/2) ⇒ sin (B+C)/2 = cos A/2 |
|
83. |
If 2θ + 45° and 30° - θ are acute angles, find the degree measure of θ satisfying |
Answer» ⇒ sin(2θ + 45°) = cos(30°- θ) ⇒ sin(2θ + 45°) = sin{90°-(30° - θ) ⇒ 2θ + 45° = 90°- 30° + θ ⇒ θ = 15° |
|
84. |
In sinθ = cos(θ - 45°), where θ and θ - 45° are acute angles, find the degree measure of θ. |
Answer» sinθ = cos(θ - 45°) ⇒ cos(90° - θ) = cos(θ - 45°) ⇒ 90° - θ = θ - 45° ⇒ 2θ = 135° ⇒ θ =\(\frac{135°}{2} = 67(\frac{1}{2})°\) |
|
85. |
Prove the following:\(\frac{sin^3\theta+cos^3\theta}{sin\theta+cos\theta} + \frac{sin^3\theta-cos^3\theta}{sin\theta-cos\theta}=2\)sin3θ+cos3θ/sinθ+cosθ +sin3θ-cos3θ/sinθ-cosθ =2 |
Answer» =2(\(\frac{sin^2\theta}{cos^2\theta}+\frac{1}{cos^2\theta}\)) = 2(\(\frac{sin^2\theta+1}{cos^2\theta}\)) =2 (\(\frac{1+ sin^2\theta}{1-sin^2\theta}\)) =R.H.S = (sin2 θ + cos2 θ – sin θ cos θ) + (sin2 θ + cos2 θ + sinθ cosθ) = 2 (sin2 θ + cos2 θ) = 2(1) = 2 = R.H.S |
|
86. |
\(\frac{cos^3θ+sin^3θ}{cosθ+sinθ}\) + \(\frac{cos^3θ-sin^3θ}{cosθ-sinθ}\) = 2 |
Answer» LHS = \(\cfrac{cos^3θ+sin^3θ}{cosθ+sinθ}\) + \(\cfrac{cos^3θ-sin^3θ}{cosθ-sinθ}\) = \(\cfrac{(cosθ+sinθ)(cos^2θ-cosθsinθ+sin^2θ)}{cosθ+sinθ}\) + \(\cfrac{(cosθ-sinθ)(cos^2θ+cosθsinθ+sin^2θ)}{cosθ-sinθ}\) = (cos2 θ + sin2 θ − cos θ sin θ) + (cos2 θ + sin2 θ + cos θ sin θ) = (1 − cos θ sin θ) + (1 + cos θ sin θ) = 2 = RHS Hence, LHS = RHS |
|
87. |
If cosec θ + cot θ = 5/2, then the value of tan θ is(A) 14/15(B) 20/21(C) 21/20(D) 15/16 |
Answer» Correct option is (B) 20/21 cosec θ + cot θ = 5/2……(i) cosec2 θ – cot2 θ = 1 ∴ (cosec θ – cot θ) (cosec θ – cot θ) = 1 ∴ 5/2 (cosec θ – cot θ) = 1 ∴ cosec θ – cot θ = 2/5...(ii) Subtracting (ii) from (i), we get 2 cot θ = 5/2 - 2/5 = 21/10 ∴ cot θ = 21/20 ∴ tan θ = 20/21 |
|
88. |
If Sin A = Cos B then A + B = …………A) 60° B) 90° C) 45° D) 120° |
Answer» Correct option is: B) 90° Sin A = cos B = sin A = sin (\(90^\circ\)-B) (\(\because\) cos \(\theta\) = sin (\(90^\circ\) - \(\theta\)) = A = \(90^\circ\) - B (By comparing angle) = A + B = \(90^\circ\) Correct option is: B) 90° |
|
89. |
Prove that(i) sin(70\(^\circ\) + θ) - cos(20\(^\circ\) - θ) = 0(ii) tan(55\(^\circ\)- θ} - cot(35\(^\circ\)+ θ = 0(iii) cosec(67\(^\circ\)+ θ) - sec(20\(^\circ\)- θ) = 0(iv) cosec(65\(^\circ\)+ θ) - sec(25\(^\circ\)- θ) - tan(55\(^\circ\)- θ) + cot(35\(^\circ\)+ θ) = 0(v) sin(50\(^\circ\)+ θ) - cos(40\(^\circ\)- θ) + tan1\(^\circ\)tan 10\(^\circ\)tan80\(^\circ\) tan89\(^\circ\) = 1 |
Answer» (i) LHS = sin(70\(^\circ\) + θ) - cos(20\(^\circ\) - θ) = sin\(\{90^\circ -(20^\circ-θ)\}\) - cos(20\(^\circ\) - θ) = cos(20\(^\circ\)- θ) - cos(20\(^\circ\) - θ) = 0 = RHS (ii) LHS = tan(55\(^\circ\)- θ} - cot(35\(^\circ\)+ θ = tan\(\{90^\circ -(35^\circ-θ)\}\) - cos(35\(^\circ\) - θ) = cot (35\(^\circ\)- θ) - cot(35\(^\circ\) - θ) = 0 = RHS (iii) LHS = cosec(67\(^\circ\)+ θ) - sec(20\(^\circ\)- θ) = cosec\(\{90^\circ -(23^\circ-θ)\}\) - sec(23\(^\circ\) - θ) = sec (23\(^\circ\)- θ) - sec(23\(^\circ\) - θ) = 0 = RHS (iv) LHS = cosec(65\(^\circ\)+ θ) - sec(25\(^\circ\)- θ) - tan(55\(^\circ\)- θ) + cot(35\(^\circ\)+ θ) = cosec\(\{90^\circ -(25^\circ-θ)\}\) - sec(25\(^\circ\) - θ) - tan(55\(^\circ\)- θ) + cot\(\{90^\circ -(55^\circ-θ)\}\) = sec (25\(^\circ\)- θ) - sec(25\(^\circ\) - θ) - tan(55\(^\circ\) - θ) + tan(55\(^\circ\) - θ) = 0 = RHS (v) LHS = sin(50\(^\circ\)+ θ) - cos(40\(^\circ\)- θ) + tan1\(^\circ\)tan 10\(^\circ\)tan80\(^\circ\) tan89\(^\circ\) = sin \(\{90^\circ -(40^\circ-θ)\}\) - cos (40\(^\circ\)- θ) + \(\{tan1^\circ tan(90^\circ-1^\circ)\}\)\(\{tan10^\circ tan(90^\circ-10^\circ)\}\) = cos (40\(^\circ\) - θ) - cos(40\(^\circ\) - θ) + (tan1\(^\circ\)cot1\(^\circ\))(tan10\(^\circ\)cot10\(^\circ\)) = \((\cfrac{1}{cot1^\circ}\times{cot1^\circ})\)\((tan10^\circ\times\cfrac{1}{tan10^\circ})\) = 1 x 1 = 1 = RHS |
|
90. |
Without using trigonometric tables, prove that(i) tan 5\(^\circ\) tan 25\(^\circ\)tan30\(^\circ\)tan 65\(^\circ\) tan 85\(^\circ\)= 1(ii) cot12\(^\circ\) cot 38\(^\circ\)cot 52\(^\circ\) cot 60\(^\circ\)cot78\(^\circ\)= \(\frac{1}{\sqrt3}\)(iii) cos 15\(^\circ\) cos 35\(^\circ\) cosec55\(^\circ\) cos 60\(^\circ\)cosec 75\(^\circ\) = \(\frac{1}2\)(iv) cos1\(^\circ\) cos 2\(^\circ\) cos3\(^\circ\)......cos 180\(^\circ\)= 0(v) \((\cfrac{sin49^\circ}{cos41^\circ})\) + \((\cfrac{cos41^\circ}{sin49^\circ})\)= 2 |
Answer» (i) LHS = tan 5\(^\circ\) tan 25\(^\circ\)tan30\(^\circ\)tan 65\(^\circ\) tan 85\(^\circ\)= 1 tan (90\(^\circ\)- 85\(^\circ\)) tan( 90\(^\circ\)- 65\(^\circ\)) x \(\frac{1}{\sqrt3}\) x \(\cfrac{1}{cot60^\circ}\) \(\cfrac{1}{cot85^\circ}\) cot 85\(^\circ\)cot 65\(^\circ\)\(\frac{1}{\sqrt3}\) \(\cfrac{1}{cot60^\circ}\) \(\cfrac{1}{cot85^\circ}\) = \(\frac{1}{\sqrt3}\) = RHS (ii) LHS = cot12\(^\circ\) cot 38\(^\circ\)cot 52\(^\circ\) cot 60\(^\circ\)cot78\(^\circ\) = tan(90\(^\circ\) - 12\(^\circ\)) x tan (90\(^\circ\) - 38\(^\circ\)) x cot52\(^\circ\)x \(\frac{1}{\sqrt3}\)x cot 78\(^\circ\) = \(\frac{1}{\sqrt3}\) x tan 78\(^\circ\)x tan 52\(^\circ\)x cot52\(^\circ\)x \(\cfrac{1}{tan52^\circ}\) \(\cfrac{1}{tan78^\circ}\) = \(\frac{1}{\sqrt3}\) = RHS (iii) LHS = cos 15\(^\circ\) cos 35\(^\circ\) cosec55\(^\circ\) cos 60\(^\circ\)cosec 75\(^\circ\) cos(90\(^\circ\)- 75\(^\circ\))cos (90\(^\circ\)- 55\(^\circ\))\(\cfrac{1}{sin55^\circ}\)x \(\frac{1}2\)x\(\cfrac{1}{sin75^\circ}\) = sin75\(^\circ\)sin55\(^\circ\)\(\cfrac{1}{sin55^\circ}\) x \(\frac{1}2\)x\(\cfrac{1}{sin75^\circ}\) = \(\frac{1}{2}\) = RHS (iv) LHS = cos1\(^\circ\) cos 2\(^\circ\) cos3\(^\circ\)......cos 180\(^\circ\) = cos1\(^\circ\)x cos 2\(^\circ\)x cos3\(^\circ\)x......x cos 90\(^\circ\)x....x cos180\(^\circ\) = cos1\(^\circ\)x cos 2\(^\circ\)x cos3\(^\circ\)x......x 0 x....x cos180\(^\circ\) = 0 = RHS (v) \((\cfrac{sin49^\circ}{cos41^\circ})\) + \((\cfrac{cos41^\circ}{sin49^\circ})\)= 2 = \((\cfrac{cos(90^\circ-49^\circ)}{cos41^\circ})^2\) + \((\cfrac{cos41^\circ}{cos(90^\circ-49^\circ)})^2\) = \((\cfrac{cos41^\circ}{cos41^\circ})^2\) + \((\cfrac{cos41^\circ}{cos41^\circ})^2\) = 12 + 12 = 1 + 1 = 2 = RHS |
|
91. |
Without using trigonometric tables, evaluate the following:2/3 cosec258° - 2/3 cot58°tan32° - 5/3 tan13°tan37°tan 45°tan 53°tan 77° |
Answer» 2/3cosec258° - 2/3cot58°tan32° - 5/3 tan13°tan37°tan 45°tan 53°tan 77° = 2/3(cosec258°- cot 58°tan32°) - 5/3 tan13°tan(90° - 13°) tan 37°tan(90° - 37°)(tan45°) = 2/3[cosec258°- cot 58°tan(90°- 58°)] - 5/3 tan13°cot13°tan37°cot37°(1) = 2/3(cosec258°- cot58°tan58°)- 5/3tan13°\(\frac{1}{tan13°}\)tan37°\(\frac{1}{tan37°}\) = 2/3(cosec258°- cot258°- 5/3 = 2/3 - 5/3 = - 1 Hence proved |
|
92. |
If sin θ = 1/2,write the value of (3cot2θ + 3) |
Answer» As, sin θ = 1/2 so, cosecθ = 1/sin θ = 2 … . . (i) Now, 3 cot2 θ + 3 = 3(cot2 θ + 1) = 3cosec2θ = 3(2)2 [Using (i)] = 3(4) = 12 |
|
93. |
Write the value of 3cot2θ - 3cosec2θ |
Answer» 3cot2θ - 3cosec2θ = 3(cot2 θ − cosec2θ) = 3(−1) = -3 |
|
94. |
Evaluate:\(\frac{tan\, 10°}{cot\, 80°}\) |
Answer» We have, \(\frac{tan 10°}{cot 80°}\) = \(\frac{tan (90° – \,10°) }{cot 80°}\) = \(\frac{cot 80°}{cos 80° }\) = 1 [∵ tan (90 – θ) = cot θ] |
|
95. |
Evaluate the following and justify your answer.sin 5° cos 85° + cos 5° sin 85° |
Answer» Given sin 5° cos 85° + cos 5° sin 85° = sin 5° . cos (90° – 5°) + cos 5° . sin (90° – 5°) = sin 5° . sin 5° + cos 5° . cos 5° [∵ sin (90° – θ) = cos θ; cos (90° – θ) = sin θ] = sin2 5° + cos2 5° = 1 [∵ sin2 θ + cos2 θ = 1] |
|
96. |
If `sqrt2 costheta-sqrt6 sintheta=2sqrt2`, then the value of `theta` can be ___________.A. `0^(@)`B. `-45^(@)`C. `30^(@)`D. `-60^(@)` |
Answer» Correct Answer - B (i) Divide the equation with`2sqrt2`. Then substitute `(1)/(2)=cos^(@) and (sqrt3)/(2)=sin60^(@)`. (ii) Now apply the formula, `cos(A+B)=cosA cosB- sinA sinB` then obtain the value of `theta`. |
|
97. |
If `sin2A=2sinA cosAand sin20^(@)=K, " then the value of " cos20^(@)cos80^(@)cos160^(@)`=__________.A. KB. `-sqrt(1-k^(2)`C. `sqrt(1-k^(2))/(8)`D. `-sqrt(1-k^(2))/(8)` |
Answer» Correct Answer - B (i) Multiply and divide the given expression with `sin20^(@)` (ii) Use `sin^(2) A = 2sinA cosA`. `sin(180-A) = sinA`. |
|
98. |
If tan (A − B) = 1/√3 and tan (A + B) = √3, 0° < (A + B) < 90° and A > B, then find A and B. |
Answer» tan (A – B)= 1/√3 or tan(A – B) = tan 30° A – B = 30° …(1) Again, tan(A+B) = √3 = tan 60° A + B = 60° …(2) Solving (1) and (2), we get 2A = 90° or A = 45° Putting A = 45° in (1), we get 45° – B = 30° or B = 45° – 30° = 15° Therefore, A = 45°, B = 15° |
|
99. |
\(\cfrac{sec30^\circ}{cosec60^\circ} \) = ?(a) \(\frac{2}{\sqrt3}\)(b) \(\frac{\sqrt3}{2}\)(c) \(\sqrt3\)(d) 1 |
Answer» Correct answer = (d) 1 \(\cfrac{sec30^\circ}{cosec60^\circ} \) = \(\cfrac{sec30^\circ}{sec(90^\circ-60^\circ)} \) = \(\cfrac{sec30^\circ}{sec30^\circ} \) = 1 |
|
100. |
If sec A = cosec(A - 36°) and 5A is an acute angle, show that A = 21°. |
Answer» Given: sec5 A = cosec(A - 36°) => cosec(90° − 5A) = cosecA − 36° ) [∵ cosec(90° − θ) = sec θ] => 90° − 5A = A − 36° => 6A = 90° + 36° => 6A = 126° => A = 21° |
|