

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
751. |
`(1)/(1+sintheta)+(1)/(1-sintheta)` is equal to __________.A. `2sec^(2)theta`B. `2cos^(2)theta`C. 0D. 1 |
Answer» Correct Answer - A Take LCM and simplify. |
|
752. |
`tan(A+B)=sqrt(3) and sinA=(1)/(sqrt(2))`, then the value of B in radians is _______ |
Answer» Correct Answer - `(pi)/(12)` | |
753. |
`[sinbeta+sin(180-beta)+sin(180+beta) ]" cosecbeta` =________________. |
Answer» Correct Answer - 1 | |
754. |
The value of `(cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x)` is __________.A. 2B. 1C. 3D. 0 |
Answer» Correct Answer - B Simplify the numerator and denominator by taking common terms appropriately. |
|
755. |
If`x=a(cosectheta+cottheta)and y=b(cottheta-cosectheta)`, thenA. `xy-ab=0`B. `xy+ab=0`C. `(x)/(a)+(y)/(b)=1`D. `x^(2)y^(2)=ab` |
Answer» Correct Answer - B Use `cosec^(2)theta-cot^(2)theta=1` |
|
756. |
Express `(tantheta+1)/(tantheta-1)` as a single trignometric ratio. |
Answer» Correct Answer - `-tan(theta+(pi)/(4))` | |
757. |
In `DeltaABC`, the lengths of the three sides AB,BC and CA are 28cm, 96 cm and 100 cm respectively. Find the value of cos C. |
Answer» Correct Answer - `cos C=(24)/(25)` | |
758. |
If `cosectheta+cottheta=3, " then find " costheta`. |
Answer» Correct Answer - `(4)/(5)` | |
759. |
If `sin A= cos B`, where A and B are acute angles, then `A+B`=__________ |
Answer» Correct Answer - `A+B=90^(@)` | |
760. |
If `sin theta =(3)/(5)` and `theta ` is acute, then find the value of `(tan theta - 2 cos theta )/(3sin theta+sec theta )`. |
Answer» Correct Answer - `(-17)/(61)` | |
761. |
ABC is a right isosceles triangle, right angled at B. Then `sin^(2)A+cos^(2)C`= _________ |
Answer» Correct Answer - `1(A=45^(@),C=45^(@))` | |
762. |
`cosec 45^(@)=`…….A. `1/(sqrt(2))`B. `sqrt(2)`C. `(sqrt3)/(2)`D. `2/(sqrt3)` |
Answer» Correct Answer - B | |
763. |
If `theta +costheta=1 and 0^(@)lethetale90^(@), " then the possible value of " theta` are ___________. |
Answer» Correct Answer - `0^(@) and 90^(@)` | |
764. |
Evaluate `sin^(2)45^(@)+cos^(2)60^(@)+cosec^(2)30^(@)`. |
Answer» Correct Answer - `(19)/(4)` | |
765. |
`cosec(7pi+theta)*(8pi+theta)`= _______. |
Answer» Correct Answer - -1 | |
766. |
If `theta_(1)=(7)/(25)and theta_(2)=(24)/(25), " then find the relation between "theta_(1) and theta_(2)`. |
Answer» Correct Answer - `theta_(1)=theta_(2)` | |
767. |
If tan A = cot B where A and B. are acute angles, prove that A + B = 90°. |
Answer» Given that tan A = cot B ⇒ cot (90° – A) = cot B [∵ tan θ = cot (90 – θ)] ⇒ 90° – A = B ⇒ A + B = 90° |
|
768. |
If tan A = cot B, prove that A + B = 90°. |
Answer» tan A = cot B tan A = tan (90 – B) A = 90 – B ∴ A + B = 90°. |
|
769. |
If tan 2A = cot (A – 18°), where 2A is an acute angle. Find the value of A. |
Answer» Given that tan 2A = cot (A – 18°) ⇒ cot (90° – 2A) = cot (A – 18°) [∵ tan θ = cot (90 – θ)] ⇒ 90° – 2A = A – 18° ⇒ 108° = 3A ⇒ A = 108° / 3 = 36° Hence the value of A is 36°. |
|
770. |
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A. |
Answer» tan 2A = cot (A – 18°) cot (90 – 2A) = cot (A – 18) 90 – 2A = A – 18 3A = 108° ∴ A = 36° |
|
771. |
If α is a root of 25cos2 θ + 5cos θ – 12 = 0, π/2 < α < π, then sin 2α is equal to(A) -24/25(B) -13/18(C) 13/18(D) 24/25 |
Answer» Correct option is : (A) -24/25 25 cos2 θ + 5 cos θ – 12 = 0 ∴ (5cos θ + 4) (5 cos θ – 3) = 0 ∴ cos θ = -4/5 or cos θ = 3/5 Since π/2 < α < π, cos α < 0 ∴ cos α = -4/5 sin2 α = 1 – cos2 α = 1 – 16/25 = 9/25 ∴ sin α = ± 3/5 Since π/2 < α < π sin α > 0 ∴ sin α = 3/5 sin 2 α = 2 sin α cos α = 2 (3/5) (-4/5) = -24/25 |
|
772. |
Evaluate the following:cos38° cos52° – sin38° sin52° |
Answer» We know that cos θ = sin (90° - θ) = sin (90° - 38°) sin (90° -52°) – sin 38° sin 52° = sin 52° sin 38°– sin 38° sin 52° = 0 |
|
773. |
Evaluate the following :tan60° . cosec245° + sec260°.tan45° |
Answer» We know that tan (60°) = √3 cosec (45°) = √2 sec (60°) = 2 tan(45°) = 1 Now putting the values; = (√3) × (√2)2 + (2)2 × (1) = 2√3 + 4 =2 (√3 + 2) |
|
774. |
If 2sin 2θ = √3 then θ = ? (a) 30°(b) 45°(c) 60°(d) 90° |
Answer» Correct answer is (a) 30° 2 sin 2θ = √3 ⇒ sin 2θ = √3/2 = sin 60° ⇒ sin 2θ = sin 60° ⇒ 2θ = 60° ⇒ θ = 30° |
|
775. |
Which among the following is true?A. `sin1^(@)gtsin1^(c)`B. `sin1^(@)ltsin1^(c)`C. `sin1^(@)=sin1^(c)`D. None of these |
Answer» Correct Answer - B (i) `1^(@)` is always less than `1^(c)`. |
|
776. |
Express cot 85° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°. |
Answer» cot 85° + cos 75° = cot (90° – 5°) + cos (90° – 15°) = tan 5° + sin 15° |
|
777. |
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°. |
Answer» sin 67° + cos 75° = sin (90 – 23) + cos (90 – 15) = cos 23° + sin 15°. |
|
778. |
Express cos75° + cot 75° in terms of angles between 0° and 30°. |
Answer» Given: cos 75° + cos 75° To find : Expression in terms of angles between 0° and 30°. Solution : Use the values: cos(90° - θ) = sinθ cot (90° - θ) = tanθ Solve, cot 75° + cot 75° = cos (90° - 15°) + cot(90° - 15°) = sin 15° + tan 15° |
|
779. |
If sin (A – B) = 1/2 and cos (A + B) = 1/2 , 0° ≤ (A + B) ≤ 90° and A > B, then find A and B |
Answer» Here, sin (A – B) = 1/2 ⇒ sin (A – B) = 30° [∵ sin 30° = 1/2 ] ⇒ (A – B) = 30° …….(i) Also, cos (A + B) = 1/2 ⇒ cos (A + B) = cos 60° [∵ cos 60° = 1/2 ] ⇒ A + B = 60° ….(ii) Solving (i) and (ii), we get: A = 45° and B = 15° |
|
780. |
If tan (A – B) = 1/√3 and tan (A + B) = √3, 0° ≤ (A + B) ≤ 90° and A > B, then find A and B. |
Answer» Here, tan (A – B) = 1/√3 ⇒ tan (A – B) = tan 30° [∵ tan 30° = 1 √3 ] ⇒ (A – B) = 30° …….(i) Also, tan (A + B) = √3 ⇒ tan (A + B) = tan 60° [∵ tan 60° =√3] ⇒ A + B = 60° …….(ii) Solving (i) and (ii), we get: A = 45° and B = 15° |
|
781. |
Prove the following identities :sin2θ – cos2 ϕ = sin2ϕ – cos2θ |
Answer» Taking LHS = sin2 θ – cos2 φ =( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1] = 1 – cos2 θ – 1 + sin2 φ = sin2 φ – cos2 θ = RHS Hence Proved |
|
782. |
cos 2θ cos 2ϕ + sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to …..(a) sin 2(θ + ϕ) (b) cos 2(θ + ϕ) (c) sin 2(θ – ϕ) (d) cos 2(θ – ϕ) |
Answer» (b) cos 2(θ + ϕ) Given cos 2θ . cos 2ϕ + sin2 (θ – ϕ) – sin2 (θ + ϕ) = cos 2θ cos 2ϕ + sin (θ – ϕ + θ + ϕ) sin (θ – ϕ – θ – ϕ) = cos 2θ cos 2ϕ + sin 2θ sin(-2ϕ) = cos 2θ cos 2ϕ – sin 2θ sin(2ϕ) = cos (2θ + 2ϕ) = cos 2(θ + ϕ) |
|
783. |
Evaluate:(i) cos 20° + cos 100° + cos 140°(ii) sin 50° – sin 70° + sin 10° |
Answer» (i) LHS = (cos 20° + cos 100°) + cos 140° = 2 cos (\(\frac{20°+100°}{2}\)) + cos (\(\frac{20°-100°}{2}\))140° [∵ cos C + cos D = 2 cos(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))] = 2 cos 60° cos(-40°) + cos 140° = 2 x \(\frac{1}{2}\) x cos(-40°) + cos(180° – 140°) [∵ cos(-θ) = cos θ, cos 60° = \(\frac{1}{2}\) = cos 40° – cos 40° = 0 Hence Proved. (ii) LHS = (sin 50° – sin 70°) + sin 10° = 2 cos (\(\frac{50+70}{2}\)) sin (\(\frac{50+70}{2}\)) + sin 10° [∵ sin C – sin D = 2 cos(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))] = 2 cos 60° sin(-10°) + sin 10° = 2 x \(\frac{1}{2}\)(-sin 10°) + sin 10° [∵ sin(-θ) = -sin θ] = -sin 10° + sin 10° = 0 = RHS |
|
784. |
cos 1° + cos 2° + cos 3° + …. + cos 179° = ……. (a) 0 (b) 1 (c) -1 (d) 89 |
Answer» (a) 0 LHS = (cos 10 + cos 179°) + (cos 2° ÷ cos 178°) + ….. + cos(89° + cos 91°) + cos 90° cos 179° = cos (180° – 1) = – cos 1° cos 178° = cos(180° – 2) = – cos 2° So (cos 1°- cos 1°) + (cos 2° – cos 2°) + (cos 89° – cos 89°) + cos 90° = 0 + 0 …. + 0 + 0 = 0. |
|
785. |
If A + B + C = π/2, prove the following (i) sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C (ii) COS 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C. |
Answer» (i) LHS = (sin 2A + sin 2B) + sin 2C = 2 sin (A + B) cos (A – B) + 2 sin C cos C = 2 sin (90° – C) cos (A – B) + 2 sin C cos C = 2 cos C [cos (A – B) + sin C] + cos (A + B) (∴ A + B = π/2 – C) = 2 cos C [cos (A – B) + cos (A + B)] = 2 cos C [2 cos A cos B] = 4 cos A cos B cos C = RHS (ii) LHS = (cos 2A + cos 2B) + cos 2C = 2 cos (A + B) cos (A – B) + 1 – 2 sin2 C = 1 + 2 sin C (cos (A – B) – 2 sin2 C) {∴ cos (A + B) = cos (90° – C) = sin C} = 1 + 2 sin C [cos (A- B) – sin C] = 1 + 2 sin C [cos (A – B) – cos (A + B)] = 1 + 2 sin C [2 sin A sin B] = 1 + 4 sin A sin B sin C = RHS |
|
786. |
The triangle of maximum area with constant perimeter 12m (a) is an equilateral triangle with side 4m (b) is an isosceles triangle with sides 2m, 5m, 5m (c) is a triangle with sides 3m, 4m, 5m (d) does not exists |
Answer» (a) is an equilateral triangle with side 4m A triangle will have a max area (with a given perimeter) when it is an equilateral triangle. |
|
787. |
If α and β are such that tan α = 2 tanβ, then what is sin (α + β) equal to?(a) 1 (b) 2 sin (α – β) (c) sin (α – β) (d) 3 sin (α – β) |
Answer» (d) 3 sin (α - β) Given, tan α = 2 tan β ⇒ \(\frac{\frac{sin\,α}{cos\,α}}{\frac{sin\,β}{cos\,β}}=2\) = \(\frac{sin\,α\,cos\,β}{cos\,α\,sin\,β}=\frac21\) Using componendo and dividendo, we get \(\frac{sin\,α\,cos\,β+cos\,α\,sin\,β}{sin\,α\,cos\,β\,-cos\,α\,sin\,β}=\frac{2+1}{2-1}\) = \(\frac{sin\,(α+β)}{sin\,(α-β)}=\frac31\) ⇒ sin (α + β) = 3 sin (α - β). |
|
788. |
Prove the followings identities:(1 – sinθ)(1 + sinθ) = cos2θ |
Answer» Taking LHS = (1 – sinθ)(1+ sinθ) Using identity , (a + b) (a – b) = (a2 – b2) , we get = (1)2 – (sinθ)2 = 1 – sin2 θ = cos2 θ [∵ cos2 θ + sin2 θ = 1] = RHS Hence Proved |
|
789. |
Prove the following identities :(sinθ – cosθ)2 = 1 – 2 sinθ . cosθ |
Answer» Taking LHS = (sin θ – cos θ)2 Using the identity,(a – b)2 = (a2 + b2 – 2ab) = sin2 θ + cos2 θ – 2sin θ cos θ = 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1] = RHS Hence Proved |
|
790. |
If x > y and 2xy/x2+y2 = cosθ, then sinθ = ……A) x2−y2/x2+y2B) x2+y2/x2−y2C) x2−y2/2xyD) 2xy/x2−y2 |
Answer» Correct option is: A) \(\frac{x^2-y^2}{x^2+y^2}\) |
|
791. |
If a cosθ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2. |
Answer» Taking RHS =x2 + y2 Putting the values of x and y, we get (a cos θ – b sin θ)2 + (a sin θ + b cos θ)2 = a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ = a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ) = a2 + b2 [∵ cos2 θ + sin2 θ = 1] = RHS Hence Proved |
|
792. |
Prove the following identities :(sinθ + cosθ)2 + (sinθ – cosθ)2 = 2 |
Answer» Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2 Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab) = sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ = 1 +1 [∵ cos2 θ + sin2 θ = 1] = 2 = RHS Hence Proved |
|
793. |
Express the terms of trigonometric ratios of angles lying between 0° and 45°.sin 59° + cos 56° |
Answer» sin 59° + cos 56° = sin (90 – 31)° + cos (90 – 34)° [sin (90 – θ) = cos θ, cos (90 – θ) = sin θ] = cos 31° + sin 34° |
|
794. |
Prove the following :tan x + cot x = 2 cosec 2x |
Answer» L.H.S. = tan x + cot x = \(\frac {sin\,x}{cos\,x} + \frac {cos\,x}{sin\, x}\) = \(\frac {sin^2x+cos^2x}{sin\,x\,cos\,x}\) = \(\frac{1}{sin\,x\,cos\,x}=\frac{2}{2sin\,x\,cos\,x}\) =\(\frac{1}{sin\,2x}\) = 2 cosec 2x = R.H.S |
|
795. |
Prove the following : (cos x – cos y)2 + (sin x – sin y)2 = 4sin2 (\(\frac{x-y}{2}\)) |
Answer» L.H.S. = (cos x – cos y)2 + (sin x – sin y)2 = cos2 x + cos2 y + 2cos x. cos y + sin2 x + sin2 y + 2sin x. sin y = (cos2 x + sin2 x) + (cos2 y + sin2 y) – 2(cos x. cos y + sin x. sin y) = 1 + 1 – 2cos(x – y) = 2 – 2 cos (x – y) = 2[1 – cos(x – y)] = 2[2sin2[((\(\frac{x-y}{2}\)))]… [∵ 1 – cos θ = 2 sin2 θ/2] = 4 sin2(\(\frac{x-y}{2}\)) =R.H.S |
|
796. |
Prove the following : (cos x + cos y)2 + (sin x + sin y)2 = 4cos2 (x-y/2) |
Answer» L.H.S. = (cos x + cos y)2 + (sin x + sin y)2 = cos2 x + cos2 y + 2cos x.cos y + sin2 x + sin2 y + 2sin x.sin y = (cos2 x + sin2 x) + (cos2 y + sin2 y) + 2(cos x.cos y + sin x.sin y) = 1 + 1 +2cos(x – y) = 2 + 2 cos (x – y) = 2[1 + cos(x – y)] = 2[2cos2 [((\(\frac{x-y}{2}\)))]...[∵ 1 + cos θ = 2 cos2 θ/2] = 4 cos2 (\(\frac{x-y}{2}\)) =R.H.S |
|
797. |
Prove the following :(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0 |
Answer» L.H.S. = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = sin 3x sin x + sin2 x + cos 3x cos x – cos2 x = (cos 3x cos x + sin 3x sin x) — (cos2 x — sin2 x) = cos (3x – x) – cos 2x = cos 2x – cos 2x = 0 = R.H.S. |
|
798. |
Prove the following: cos θ + sin (270° + θ) – sin (270° – θ) + cos (180° + θ) = 0 |
Answer» L.H.S. = cos θ + sin (270° + θ) – sin (270° – θ) + cos (180° + θ) = cos θ + (- cos θ)-(- cos θ) – cos θ = cos θ – cos θ + cos θ – cos θ = 0 = R.H.S. |
|