Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

751.

`(1)/(1+sintheta)+(1)/(1-sintheta)` is equal to __________.A. `2sec^(2)theta`B. `2cos^(2)theta`C. 0D. 1

Answer» Correct Answer - A
Take LCM and simplify.
752.

`tan(A+B)=sqrt(3) and sinA=(1)/(sqrt(2))`, then the value of B in radians is _______

Answer» Correct Answer - `(pi)/(12)`
753.

`[sinbeta+sin(180-beta)+sin(180+beta) ]" cosecbeta` =________________.

Answer» Correct Answer - 1
754.

The value of `(cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x)` is __________.A. 2B. 1C. 3D. 0

Answer» Correct Answer - B
Simplify the numerator and denominator by taking common terms appropriately.
755.

If`x=a(cosectheta+cottheta)and y=b(cottheta-cosectheta)`, thenA. `xy-ab=0`B. `xy+ab=0`C. `(x)/(a)+(y)/(b)=1`D. `x^(2)y^(2)=ab`

Answer» Correct Answer - B
Use `cosec^(2)theta-cot^(2)theta=1`
756.

Express `(tantheta+1)/(tantheta-1)` as a single trignometric ratio.

Answer» Correct Answer - `-tan(theta+(pi)/(4))`
757.

In `DeltaABC`, the lengths of the three sides AB,BC and CA are 28cm, 96 cm and 100 cm respectively. Find the value of cos C.

Answer» Correct Answer - `cos C=(24)/(25)`
758.

If `cosectheta+cottheta=3, " then find " costheta`.

Answer» Correct Answer - `(4)/(5)`
759.

If `sin A= cos B`, where A and B are acute angles, then `A+B`=__________

Answer» Correct Answer - `A+B=90^(@)`
760.

If `sin theta =(3)/(5)` and `theta ` is acute, then find the value of `(tan theta - 2 cos theta )/(3sin theta+sec theta )`.

Answer» Correct Answer - `(-17)/(61)`
761.

ABC is a right isosceles triangle, right angled at B. Then `sin^(2)A+cos^(2)C`= _________

Answer» Correct Answer - `1(A=45^(@),C=45^(@))`
762.

`cosec 45^(@)=`…….A. `1/(sqrt(2))`B. `sqrt(2)`C. `(sqrt3)/(2)`D. `2/(sqrt3)`

Answer» Correct Answer - B
763.

If `theta +costheta=1 and 0^(@)lethetale90^(@), " then the possible value of " theta` are ___________.

Answer» Correct Answer - `0^(@) and 90^(@)`
764.

Evaluate `sin^(2)45^(@)+cos^(2)60^(@)+cosec^(2)30^(@)`.

Answer» Correct Answer - `(19)/(4)`
765.

`cosec(7pi+theta)*(8pi+theta)`= _______.

Answer» Correct Answer - -1
766.

If `theta_(1)=(7)/(25)and theta_(2)=(24)/(25), " then find the relation between "theta_(1) and theta_(2)`.

Answer» Correct Answer - `theta_(1)=theta_(2)`
767.

If tan A = cot B where A and B. are acute angles, prove that A + B = 90°.

Answer»

Given that tan A = cot B 

⇒ cot (90° – A) = cot B [∵ tan θ = cot (90 – θ)] 

⇒ 90° – A = B 

⇒ A + B = 90°

768.

If tan A = cot B, prove that A + B = 90°.

Answer»

tan A = cot B 

tan A = tan (90 – B) 

A = 90 – B 

∴ A + B = 90°.

769.

If tan 2A = cot (A – 18°), where 2A is an acute angle. Find the value of A.

Answer»

Given that tan 2A = cot (A – 18°)

⇒ cot (90° – 2A) = cot (A – 18°) [∵ tan θ = cot (90 – θ)] 

⇒ 90° – 2A = A – 18° 

⇒ 108° = 3A 

⇒ A =  108° / 3  = 36° 

Hence the value of A is 36°.

770.

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.

Answer»

tan 2A = cot (A – 18°) 

cot (90 – 2A) = cot (A – 18) 

90 – 2A = A – 18 

3A = 108° 

∴ A = 36°

771.

If α is a root of 25cos2 θ + 5cos θ – 12 = 0, π/2 < α < π, then sin 2α is equal to(A) -24/25(B) -13/18(C) 13/18(D) 24/25

Answer»

Correct option is : (A) -24/25

25 cos2 θ + 5 cos θ – 12 = 0 

∴ (5cos θ + 4) (5 cos θ – 3) = 0 

∴ cos θ = -4/5 or cos θ = 3/5

Since π/2 < α < π,

cos α < 0

∴ cos α = -4/5

sin2 α = 1 – cos2 α = 1 – 16/25 = 9/25

∴ sin α = ± 3/5

Since π/2 < α < π sin α > 0

∴ sin α = 3/5 

sin 2 α = 2 sin α cos α

= 2 (3/5) (-4/5) = -24/25

772.

Evaluate the following:cos38° cos52° – sin38° sin52°

Answer»

We know that

cos θ = sin (90° - θ)

= sin (90° - 38°) sin (90° -52°) – sin 38° sin 52°

= sin 52° sin 38°– sin 38° sin 52°

= 0

773.

Evaluate the following :tan60° . cosec245° + sec260°.tan45°

Answer»

We know that

tan (60°) = √3

cosec (45°) = √2

sec (60°) = 2

tan(45°) = 1

Now putting the values;

= (√3) × (√2)2 + (2)2 × (1)

= 23 + 4

=2 (√3 + 2)

774.

If 2sin 2θ = √3  then θ = ? (a) 30°(b) 45°(c) 60°(d) 90°

Answer»

Correct answer is (a) 30°

2 sin 2θ = √3 

⇒ sin 2θ = √3/2 = sin 60°

⇒ sin 2θ = sin 60°

⇒ 2θ = 60°

⇒ θ = 30°

775.

Which among the following is true?A. `sin1^(@)gtsin1^(c)`B. `sin1^(@)ltsin1^(c)`C. `sin1^(@)=sin1^(c)`D. None of these

Answer» Correct Answer - B
(i) `1^(@)` is always less than `1^(c)`.
776.

Express cot 85° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Answer»

cot 85° + cos 75° = cot (90° – 5°) + cos (90° – 15°)

= tan 5° + sin 15°

777.

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Answer»

sin 67° + cos 75° 

= sin (90 – 23) + cos (90 – 15) 

= cos 23° + sin 15°.

778.

Express cos75° + cot 75° in terms of angles between 0° and 30°.

Answer»

Given: cos 75° + cos 75°

To find : Expression in terms of angles between 0° and 30°. 

Solution : Use the values:

cos(90° - θ) = sinθ

cot (90° - θ) = tanθ

Solve,

cot 75° + cot 75° 

=  cos (90° - 15°) + cot(90° - 15°)

= sin 15° + tan 15°

779.

If sin (A – B) = 1/2 and cos (A + B) = 1/2 , 0° ≤ (A + B) ≤ 90° and A &gt; B, then find A and B

Answer»

Here, sin (A – B) = 1/2 

⇒ sin (A – B) = 30° [∵ sin 30° = 1/2 ] 

⇒ (A – B) = 30° …….(i) 

Also, cos (A + B) = 1/2 

⇒ cos (A + B) = cos 60° [∵ cos 60° = 1/2 ] 

⇒ A + B = 60° ….(ii) 

Solving (i) and (ii), we get: 

A = 45° and B = 15°

780.

If tan (A – B) = 1/√3 and tan (A + B) = √3, 0° ≤ (A + B) ≤ 90° and A &gt; B, then find A and B.

Answer»

Here, tan (A – B) = 1/√3 

⇒ tan (A – B) = tan 30° [∵ tan 30° = 1 √3 ] 

⇒ (A – B) = 30° …….(i) 

Also, tan (A + B) = √3

⇒ tan (A + B) = tan 60° [∵ tan 60° =√3] 

⇒ A + B = 60° …….(ii) 

Solving (i) and (ii), we get: 

A = 45° and B = 15°

781.

Prove the following identities :sin2θ – cos2 ϕ = sin2ϕ – cos2θ

Answer»

Taking LHS = sin2 θ – cos2 φ

=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]

= 1 – cos2 θ – 1 + sin2 φ

= sin2 φ – cos2 θ

= RHS

Hence Proved

782.

cos 2θ cos 2ϕ + sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to …..(a) sin 2(θ + ϕ) (b) cos 2(θ + ϕ) (c) sin 2(θ – ϕ) (d) cos 2(θ – ϕ)

Answer»

(b) cos 2(θ + ϕ)

Given cos 2θ . cos 2ϕ + sin2 (θ – ϕ) – sin2 (θ + ϕ) 

= cos 2θ cos 2ϕ + sin (θ – ϕ + θ + ϕ) sin (θ – ϕ – θ – ϕ) 

= cos 2θ cos 2ϕ + sin 2θ sin(-2ϕ)

= cos 2θ cos 2ϕ – sin 2θ sin(2ϕ) 

= cos (2θ + 2ϕ) = cos 2(θ + ϕ)

783.

Evaluate:(i) cos 20° + cos 100° + cos 140°(ii) sin 50° – sin 70° + sin 10°

Answer»

(i) LHS = (cos 20° + cos 100°) + cos 140°

= 2 cos (\(\frac{20°+100°}{2}\)) + cos (\(\frac{20°-100°}{2}\))140°

[∵ cos C + cos D = 2 cos(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))]

= 2 cos 60° cos(-40°) + cos 140°

= 2 x \(\frac{1}{2}\) x cos(-40°) + cos(180° – 140°)

[∵ cos(-θ) = cos θ, cos 60° = \(\frac{1}{2}\)

= cos 40° – cos 40°

= 0

Hence Proved.

(ii) LHS = (sin 50° – sin 70°) + sin 10°

= 2 cos (\(\frac{50+70}{2}\)) sin  (\(\frac{50+70}{2}\)) + sin 10°

[∵ sin C – sin D = 2 cos(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))]

= 2 cos 60° sin(-10°) + sin 10°

= 2 x \(\frac{1}{2}\)(-sin 10°) + sin 10° [∵ sin(-θ) = -sin θ]

= -sin 10° + sin 10°

= 0

= RHS

784.

cos 1° + cos 2° + cos 3° + …. + cos 179° = ……. (a) 0 (b) 1 (c) -1 (d) 89

Answer»

(a) 0

LHS = (cos 10 + cos 179°) + (cos 2° ÷ cos 178°) + ….. + cos(89° + cos 91°) + cos 90° 

cos 179° = cos (180° – 1) = – cos 1° 

cos 178° = cos(180° – 2) = – cos 2° 

So (cos 1°- cos 1°) + (cos 2° – cos 2°) + (cos 89° – cos 89°) + cos 90° 

= 0 + 0 …. + 0 + 0 = 0.

785.

If A + B + C = π/2, prove the following (i) sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C (ii) COS 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C.

Answer»

(i) LHS = (sin 2A + sin 2B) + sin 2C 

= 2 sin (A + B) cos (A – B) + 2 sin C cos C = 2 sin

(90° – C) cos (A – B) + 2 sin C cos C 

= 2 cos C [cos (A – B) + sin C] + cos (A + B) (∴ A + B = π/2 – C) 

= 2 cos C [cos (A – B) + cos (A + B)] 

= 2 cos C [2 cos A cos B] 

= 4 cos A cos B cos C = RHS

(ii) LHS = (cos 2A + cos 2B) + cos 2C 

= 2 cos (A + B) cos (A – B) + 1 – 2 sin2

= 1 + 2 sin C (cos (A – B) – 2 sin2 C) 

{∴ cos (A + B) = cos (90° – C) = sin C} 

= 1 + 2 sin C [cos (A- B) – sin C] 

= 1 + 2 sin C [cos (A – B) – cos (A + B)] 

= 1 + 2 sin C [2 sin A sin B] 

= 1 + 4 sin A sin B sin C = RHS

786.

The triangle of maximum area with constant perimeter 12m (a) is an equilateral triangle with side 4m (b) is an isosceles triangle with sides 2m, 5m, 5m (c) is a triangle with sides 3m, 4m, 5m (d) does not exists

Answer»

(a) is an equilateral triangle with side 4m

A triangle will have a max area (with a given perimeter) when it is an equilateral triangle.

787.

If α and β are such that tan α = 2 tanβ, then what is sin (α + β) equal to?(a) 1 (b) 2 sin (α – β) (c) sin (α – β) (d) 3 sin (α – β)

Answer»

(d) 3 sin (α - β)

Given, tan α = 2 tan β ⇒ \(\frac{\frac{sin\,α}{cos\,α}}{\frac{sin\,β}{cos\,β}}=2\)

\(\frac{sin\,α\,cos\,β}{cos\,α\,sin\,β}=\frac21\)

Using componendo and dividendo, we get

\(\frac{sin\,α\,cos\,β+cos\,α\,sin\,β}{sin\,α\,cos\,β\,-cos\,α\,sin\,β}=\frac{2+1}{2-1}\)

\(\frac{sin\,(α+β)}{sin\,(α-β)}=\frac31\) ⇒ sin (α + β) = 3 sin (α - β).

788.

Prove the followings identities:(1 – sinθ)(1 + sinθ) = cos2θ

Answer»

Taking LHS = (1 – sinθ)(1+ sinθ)

Using identity , (a + b) (a – b) = (a2 – b2) , we get

= (1)2 – (sinθ)2

= 1 – sin2 θ

= cos2 θ [∵ cos2 θ + sin2 θ = 1]

= RHS

Hence Proved

789.

Prove the following identities :(sinθ – cosθ)2 = 1 – 2 sinθ . cosθ

Answer»

Taking LHS = (sin θ – cos θ)2

Using the identity,(a – b)2 = (a2 + b2 – 2ab)

= sin2 θ + cos2 θ – 2sin θ cos θ

= 1 – 2sin θ cos θ [∵ cos2 θ + sin2 θ = 1]

= RHS

Hence Proved

790.

If x &gt; y and 2xy/x2+y2 = cosθ, then sinθ = ……A) x2−y2/x2+y2B) x2+y2/x2−y2C) x2−y2/2xyD) 2xy/x2−y2

Answer»

Correct option is: A) \(\frac{x^2-y^2}{x^2+y^2}\)

791.

If a cosθ – b sinθ = x and a sinθ + b cosθ = y that a2 + b2 = x2 + y2.

Answer»

Taking RHS =x2 + y2

Putting the values of x and y, we get

(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2

= a2cos2θ + b2 sin2θ – 2ab cos θ sin θ + a2sin2θ + b2 cos2θ + 2ab cos θ sin θ

= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)

= a2 + b2 [∵ cos2 θ + sin2 θ = 1]

= RHS

Hence Proved

792.

Prove the following identities :(sinθ + cosθ)2 + (sinθ – cosθ)2 = 2

Answer»

Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2

Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)

= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ

= 1 +1 [∵ cos2 θ + sin2 θ = 1]

= 2

= RHS

Hence Proved

793.

Express the terms of trigonometric ratios of angles lying between 0° and 45°.sin 59° + cos 56°

Answer»

sin 59° + cos 56° 

= sin (90 – 31)° + cos (90 – 34)° [sin (90 – θ) = cos θ, cos (90 – θ) = sin θ]

= cos 31° + sin 34°

794.

Prove the following :tan x + cot x = 2 cosec 2x

Answer»

L.H.S. = tan x + cot x

\(\frac {sin\,x}{cos\,x} + \frac {cos\,x}{sin\, x}\)

\(\frac {sin^2x+cos^2x}{sin\,x\,cos\,x}\)

\(\frac{1}{sin\,x\,cos\,x}=\frac{2}{2sin\,x\,cos\,x}\)

=\(\frac{1}{sin\,2x}\)

= 2 cosec 2x = R.H.S

795.

Prove the following : (cos x – cos y)2 + (sin x – sin y)2 = 4sin2 (\(\frac{x-y}{2}\))

Answer»

L.H.S. = (cos x – cos y)2 + (sin x – sin y)2

= cos2 x + cos2 y + 2cos x. cos y + sin2 x + sin2 y + 2sin x. sin y 

= (cos2 x + sin2 x) + (cos2 y + sin2 y) – 2(cos x. cos y + sin x. sin y) 

= 1 + 1 – 2cos(x – y) 

= 2 – 2 cos (x – y) 

= 2[1 – cos(x – y)]

= 2[2sin2[((\(\frac{x-y}{2}\)))]… [∵ 1 – cos θ = 2 sin2 θ/2]

= 4 sin2(\(\frac{x-y}{2}\))

=R.H.S

796.

Prove the following : (cos x + cos y)2 + (sin x + sin y)2 = 4cos2 (x-y/2)

Answer»

L.H.S. = (cos x + cos y)2 + (sin x + sin y)2 

= cos2 x + cos2 y + 2cos x.cos y + sin2 x + sin2 y + 2sin x.sin y 

= (cos2 x + sin2 x) + (cos2 y + sin2 y) + 2(cos x.cos y + sin x.sin y) 

= 1 + 1 +2cos(x – y) 

= 2 + 2 cos (x – y) 

= 2[1 + cos(x – y)]

= 2[2cos2 [((\(\frac{x-y}{2}\)))]...[∵ 1 + cos θ = 2 cos2 θ/2]

= 4 cos2 (\(\frac{x-y}{2}\))

=R.H.S

797.

Prove the following :(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

Answer»

L.H.S. = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x 

= sin 3x sin x + sin2 x + cos 3x cos x – cos2

= (cos 3x cos x + sin 3x sin x) 

— (cos2 x — sin2 x) 

= cos (3x – x) – cos 2x 

= cos 2x – cos 2x 

= 0 

= R.H.S.

798.

Prove the following:    cos θ + sin (270° + θ) – sin (270° – θ) + cos (180° + θ) = 0

Answer»

L.H.S. = cos θ + sin (270° + θ) – sin (270° – θ) + cos (180° + θ) 

= cos θ + (- cos θ)-(- cos θ) – cos θ 

= cos θ – cos θ + cos θ – cos θ 

= 0 

= R.H.S.