

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
701. |
The value of \(\frac{3tan10°-tan^310°}{1-3tan^210°}\) is:(a) \(\frac{1}{\sqrt{3}}\)(b) \(\frac{1}{2}\)(c) \(\frac{\sqrt{3}}{2}\)(d) \(\frac{1}{\sqrt{2}}\) |
Answer» (a) \(\frac{1}{\sqrt{3}}\) \(\frac{3tan10°-tan^310°}{1-3tan^210°}\) = tan(3 x 10°) [∵ tan 3A = \(\frac{3tanA-tan^3A}{1-3tan^2A}\)] = tan 30° = \(\frac{1}{\sqrt{3}}\) |
|
702. |
What is the value of \(\frac{5\,sin\,75°\,sin\,77°+2\,cos\,13°cos\,15°}{cos\,15°sin77°}\) - \(\frac{7\,sin\,81°}{cos\,90}\)?(a) –1 (b) 0(c) 1 (d) 2 |
Answer» \(\frac{5\,sin\,75°\,sin\,77°+2\,cos\,13°cos\,15°}{cos\,15°sin77°}\) - \(\frac{7\,sin\,81°}{cos\,90}\) = \(\frac{5\,sin\,(90°-15°)\,sin\,77°+2\,cos\,(90°-77°)cos\,15°}{cos\,15°sin\,77°}\) - \(\frac{7\,sin\,(90°-9°)}{cos\,9°}\) = \(\frac{5\,cos\,15°\,sin\,77°+2\,sin\,77°cos\,15°}{cos\,15°sin\,77°}\) - \(\frac{7\,sin\,9°}{cos\,9°}\) = \(\frac{5\,cos\,15°\,sin\,77°}{cos\,15°sin\,77°}\) - \(\frac{7\,sin\,9°}{cos\,9°}\) = 7 - 7 = 0. |
|
703. |
The value of sin(-420°) (a) \(\frac{\sqrt{3}}{2}\)(b) \(-\frac{\sqrt{3}}{2}\)(c) \(\frac{1}{2}\)(d) \(-\frac{1}{2}\) |
Answer» (b) \(-\frac{\sqrt{3}}{2}\) sin(-420°) = -sin(420°) [∵ sin(-θ) = -sin θ] = -sin(360° + 60°) = -sin 60° = \(-\frac{\sqrt{3}}{2}\) |
|
704. |
What is the value of sin215° + sin2 20° + sin225° + ........ + sin275°?(a) tan215° + tan2 20° + tan225° + ........ + tan275° (b) cos215° + cos2 20° + cos225° + ........ + cos275° (c) cot215° + cot2 20° + cot225° + ........ + cot275° (d) sec215° + sec2 20° + sec225° + ........ + sec275° |
Answer» (b) cos2 75° + cos2 70° + ........ + cos2 15° sin2 15° + sin2 20° + sin2 25° + ........ + sin2 75° = sin2 (90° – 75°) + sin2 (90° – 70°) + ... + sin2 (90° – 15°) = cos2 75° + cos2 70° + ........ + cos2 15° |
|
705. |
sin 120° cos 150° – cos 240° sin 330° is equal to(a) \(-\bigg(\frac{\sqrt3+1}{4}\bigg)\)(b) –1 c) 1 (d) \(\frac23\) |
Answer» (b) -1 sin 120° cos 150° – cos 240° sin 330° = sin (180° – 60°) cos (180° – 30°) – cos (180° + 60°) sin (360° – 30°) = (sin 60°) . (– cos 30°) – (– cos 60°) (– sin 30°) = \(\frac{\sqrt3}{2}\times-\frac{\sqrt3}{2}-\big(\frac{-1}{2}\big)\big(\frac{-1}{2}\big)\) = \(-\frac34-\frac14=-\frac44=-1.\) |
|
706. |
State the signs of cosec 520° |
Answer» 520° =360° + 160° ∴ 520° and 160° are co-terminal angles. Since 90° < 160° < 180°, 160° lies in the 2nd quadrant. ∴ 520° lies in the 2nd quadrant, ∴ cosec 520° is positive. |
|
707. |
Express the following as a sum or difference of two trigonometric functions: 2cos 35° cos 75° |
Answer» 2cos 35° cos75° = cos(35° + 75°) + cos (35° – 75°) = cos 110° + cos (-40)° = cos 110° + cos 40° … [∵ cos(-θ) = cos θ] |
|
708. |
Express the following as a sum or difference of two trigonometric functions:2sin 4x cos 2x |
Answer» 2sin 4x cos 2x = sin(4x + 2x ) + sin (4x – 2x) = sin 6x + sin 2x |
|
709. |
Express the following as a sum or difference of two trigonometric functions: 2sin 2π/3 cos π/2 |
Answer» 2 sin 2π/3 cos π/2 = sin (\(\frac{2π}{3}+\frac{π}{2} \)) sin (\(\frac{2π}{3}-\frac{π}{2} \)) = sin \(\frac{7π}{6}+sin\, \frac{π}{6} \) |
|
710. |
Prove that cos5 θ = 16 cos5 θ – 20 cos3 θ + 5 cos θ. |
Answer» cos5 θ = cos(2θ + 3θ) = cos 2θ cos 3θ – sin 2θ sin 3θ = (2 cos2 θ – 1) (4 cos3 θ – 3 cos θ) – 2 sin θ cos θ (3 sin θ – 4 sin3 θ) = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 sin2 θ cos θ + 8 cos θ sin4 θ = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6(1 – cos2 θ) cos θ + 8 cos θ (1 – cos2 θ)2 = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 cos θ + 6 cos3 θ + 8 cos 0(1+ cos4 θ – 2 cos2 θ) = 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 cos θ + 6 cos3 θ + 8 cos θ + 8 cos5 θ – 16 cos3 θ = 16 cos3 θ – 20 cos3 θ + 5 cos θ = RHS |
|
711. |
The value of tan 1°.tan 2° tan 3° equal to(A) -1 (B) 1(C) π/2(D) 2 |
Answer» Correct option is (B) 1 tan1° tan2° tan3° … tan89° = (tan 1° tan 89°) (tan 2° tan 88°) …(tan 44° tan 46°) tan 45° = (tan 1 ° cot 1 °) (tan 2° cot 2°) …(tan 44° cot 44°) . tan 45° …tan(∵ 90° – θ) = cot θ] = 1 x 1 x 1 x … x 1 x tan 45° = 1 |
|
712. |
The value of tan 1°.tan 2° tan 3° equal to (A) -1 (B) 1(C) π/2(D) 2 |
Answer» Correct answer is (B) 1 Explanation : tan1° tan2° tan3° … tan89° = (tan 1° tan 89°) (tan 2° tan 88°) …(tan 44° tan 46°) tan 45° = (tan 1 ° cot 1 °) (tan 2° cot 2°) …(tan 44° cot 44°) . tan 45° …tan(∵ 90° – θ) = cot θ] = 1 x 1 x 1 x … x 1 x tan 45° = 1 |
|
713. |
If A + B = 45°, show that (1 + tan A) (1 + tan B) = 2. |
Answer» A + B = 45° tan (A + B) = tan 45° = 1 (i.e) (tan A + tan B)/(1 - tan A tan B) = 1 tan A + tan B = 1 - tan A tan B ... (1) Now LHS = (1 + tan A) (1 + tan B) = tan A + tan B + tan A tan B + 1 = (1 – tan A tan B) + (tan A tan B + 1) from (1) = 2 = RHS |
|
714. |
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22\(\frac{1}{2}\). |
Answer» Given A + B = 45° tan (A + B) = tan 45° \(\frac{tanA+tanB}{1-tanAtanB}\) = 1 tan A + tan B = 1 – tan A.tan B tan A + tan B + tan A tan B = 1 Add 1 on both sides we get, (1 + tan A) + tan B + tan A tan B = 2 1(1+ tan A) + tan B (1 + tan A) = 2 (1 + tan A) (1 + tan B) = 2 … (1) Put A = B = 22\(\frac{1}{2}\) in (1) we get (1 + tan 22\(\frac{1}{2}\)) (1 + tan 22\(\frac{1}{2}\)) = 2 ⇒ (1 + tan 22\(\frac{1}{2}\))2 = 2 ⇒ 1 + tan 22\(\frac{1}{2}\) = ±√2 ⇒ tan 22\(\frac{1}{2}\) = ±√2 – 1 Since 22\(\frac{1}{2}\) is acute, tan 22\(\frac{1}{2}\) is positive and Therefore tan 22\(\frac{1}{2}\) = √2 – 1 |
|
715. |
Find the values of 2 sin 30° + cos 0° + 3 sin 90° |
Answer» 2 sin 30° + cos 0° + 3 sin 90° 2 sin 30° + cos0° + 3 sin 90° = 2 (1/2 ) + 1 + 3(1) = 1 + 1 + 3 ∴ 2 sin 30° + cos 0° + 3 sin 90° = 5 |
|
716. |
If `sin^(4) theta+cos^(4)theta=(1)/(2)`, then find `sin theta cos theta `.A. `pm(1)/(8)`B. `pm(1)/(4)`C. `pm1`D. `pm(1)/(2)` |
Answer» Correct Answer - D Use the identity `a^(2)+b^(2)=(a+b)^(2)-2ab` |
|
717. |
If `sin theta=(a)/(b) `, then `cos theta ` and `tan theta ` in term of a and b areA. `(sqrt(b^(2)-a^(2)))/(b) and (b)/(sqrt(b^(2)-a^(2)))`B. `(b)/(sqrt(b^(2)-a^(2))) and (a)/(sqrt(b^(2)-a^(2)))`C. `(sqrt(a^(2)-b^(2)))/(a) and (b)/(sqrt(a^(2)-b^(2)))`D. `(sqrt(b^(2)-a^(2)))/(b) and (a)/(sqrt(b^(2)-a^(2)))` |
Answer» Correct Answer - D Apply ` cos theta=(" Side adjacent to " theta )/(" Hypotenuse")`, `tan theta =("Side opposite to " theta )/( " Side adjacent to " theta )`. |
|
718. |
If `sin alpha=(4)/(5)`, where `(0^(@) le alpha le 90^(@))`, then find `sin 2 alpha`.A. `(12)/(25)`B. `-(24)/(25)`C. `(25)/(24)`D. `(24)/(25)` |
Answer» Correct Answer - D Use ` sin 2 alpha=2 sin alpha cos alpha `. |
|
719. |
Express the following as a single trigonometric ratio:`sqrt(3) cos theta- sin theta ` |
Answer» Given `sqrt(3) cos theta- sin theta ` `2((sqrt(3))/(2) cos theta-(1)/(2) sin theta)` `=2(cos theta* cos 30^(@)- sin theta * sin30^(@))` `=2(cos(theta+30^(@)))` `implies sqrt(3) cos theta- sin theta=2 cos (theta+30^(@))`. |
|
720. |
The length of the minutes hand of a wall clock is 6 cm. Find the distance covered by the tip of the minutes hand in 25 minutesA. `(270)/(1)cm`B. `110 cm `C. `(88)/(7)cm `D. ` 110/7 cm ` |
Answer» Correct Answer - D (i) The minutes hand covers an angle of `6^(@) ` per minute. (ii) Use `l=rxx theta ` |
|
721. |
The distance covered by the tip of a minute hand in 35 minutes is 33 cm. What is the length of the minute hand ?A. 6 cmB. 9 cmC. 10 cmD. 12 cm |
Answer» Correct Answer - B (i) Minutes hand moves `6^(@)` in one minute. (ii) Use `l=rxx theta ` |
|
722. |
The value of the expression(sin222°+ sin268°)/(cos222°+ cos268°) + sin263 cos 63° sin27° is(A) 3 (B) 2 (C) 1 (D) 0 |
Answer» Correct answer is (B) 2 |
|
723. |
Prove that :cos 27° + sin51° = sin63° + cos 39° |
Answer» Taking LHS = cos 27° + sin51o We know that cos θ = sin (90° - θ) Here, θ = 27° ⇒ sin (90° - 27°)+ sin 51° ⇒ sin 63°+ sin 51° We also know that Sin θ = cos (90° - θ) Here, θ = 51° ⇒ sin 63°+ cos (90° - 51°) ⇒ sin 63°+ cos 39° = RHS Hence Proved |
|
724. |
Prove that : sin9°. sin27°. sin63°. sin81° = cos9°.cos27°.cos63°.cos81° |
Answer» Taking LHS = sin 9° sin 27° sin 63° sin 81° = cos (90° - 9°) cos (90° - 27°) cos (90° – 63°) cos (90°- 81°) = cos 81° cos 63° cos 27° cos 9° Or cos 9° cos 27° cos 63° cos 81° = RHS Hence Proved |
|
725. |
Evaluate each of the following:cos60° cos45° - sin60° sin 45° |
Answer» cos60° cos45° - sin60° sin 45° = \(\frac{1}2\) x \(\frac{1}{\sqrt{2}}\) - \(\frac{\sqrt3}2\) x \(\frac{1}{\sqrt{2}}\) = \(\frac{1-\sqrt3}{2\sqrt2}\) |
|
726. |
sin2 30°+ 4cot2 45° - sec2 60° = ?(a) 0 (b) 1/4 (c) 4 (d) 1 |
Answer» Correct answer is (b) 1/4 (Sin2 30° + 4 cot2 45° − sec2 60°) = [( 1/2 )2 + 4×(1)2 − (2)2] = (1/4 + 4 − 4) = 1/4 |
|
727. |
Find the numerical value of the following :sin90° – cos0° + tan0° + tan45° |
Answer» We know that Sin (90°) = 1 Cos (0°) = 1 Tan(0°) = 0 Tan(45°) = 1 Now putting the value, we get = 1 – 1 + 0 + 1 = 1 |
|
728. |
If x = y cos \(\frac{2π}{3}\) = z cos \(\frac{4π}{3}\), then what is xy + yz + zx equal to? |
Answer» \(x\) = y cos 120° = z cos 240° ⇒ \(x\) = y cos (180° – 60°) = z cos (180° + 60°) ⇒ \(x\) = – y cos 60° = – z cos 60° (∵ cos (180° – θ) = – cos θ = cos (180° + θ)) ⇒ \(x\) = \(-\frac12\) y = \(-\frac{z}2\) ⇒ 2\(x\) = – y = – z ⇒ \(\frac{x}{\frac12}\) = \(\frac{y}{(-1)}\) = \(\frac{z}{(-1)}\) = k ⇒ \(x\) = \(\frac{k}{2}\) , y = – k, z = – k ∴ xy + yz + zx = \(\big(\frac{k}{2}\big)\) (–k) + (–k) (–k) + (–k) \(\big(\frac{k}{2}\big)\) = \(\frac{-k^2}{2}\) + k2 – \(\frac{k^2}{2}\) = 0. |
|
729. |
If `P:Q= tan 2A: cos A and Q: R= cos 2A: sin 2A,` then `P:R` is _________A. tan 2AB. 2 sinAC. 1D. sec A |
Answer» Correct Answer - D | |
730. |
If `sintheta=(1)/(2)where 0^(@)lethetale180^(@), "then the possibel value of " theta " are` "____________. |
Answer» Correct Answer - `30^(@)or150^(@)` | |
731. |
\(\frac{1-tan^2\,30^\circ}{1+tan^2\,30^\circ}\) = ……..A) 1/2B) 1/√2C) √3/2D) 1 |
Answer» Correct option is: A) \(\frac{1}{2}\) \(\frac{1-tan^2 30^\circ}{1+tan^2 30^\circ} = \frac {1-(\frac 1{\sqrt3})^2}{1+ (\frac 1{\sqrt3})^2}\) ( \(\because\) tan \(30^\circ\) = \(\frac 1{\sqrt3}\)) = \(\frac {1-\frac 13}{1+ \frac 13} = \frac {\frac {3-1}3}{\frac {3+1}3} = \frac 24 = \frac 12\) Correct option is: A) \(\frac{1}{2}\) |
|
732. |
Prove `: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0`. |
Answer» Proof: `LHS=2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta)+cos^(4)theta)+1` `=2[(sin^(2)theta)^(3)+(cos^(2)theta)^(3)]-3(sin^(4) theta+cos^(4) theta)+1` `=2[(sin^(2)theta+cos^(2) theta)(sin^(4) theta-sin^(2) theta.cos^(2) theta+cos^(4) theta)]-3(sin^(4)theta+cos^(4)theta)+1` `......[(a^(3)+b^(3))=(a+b)(a^(2)-ab+b^(2)]` `=2(1)(sin^(4) theta-sin^(2)theta.cos^(2) theta+cos^(4)theta)-3(sin^(4) theta+cos^(4)theta)+1` `=2sin^(4) theta-2sin^(2) theta. cos^(2) theta+2cos^(4) theta-3sin^(4) theta-3cos^(4) theta+1` `=-sin^(4) theta-cos^(4) theta-2sin^(2) theta. cos^(2) +1` `=-(sin^(4) theta+2sin^(2) theta.cos^(2) theta+cos^(4) theta)+1` `=-(sin^(2) theta+cos^(2) theta)^(2) +1`...........`[(a^(2) +2ab+b^(2))=(a+b)^(2)]` `=-(1)^(2)=1`..........`(sin^(2) theta+cos^(2) theta=1)` `=-1+1=0=RHS` `:.2(sin^(6)theta+cos^(6)theta)-3(sin^(4) theta+cos^(4) theta)+1=0`. |
|
733. |
cos4 θ – sin4 θ =A) cos2 θ – sin2 θB) 2cos2 θ – 1C) 1 – 2sin2 θD) None |
Answer» Correct option is: A) \(cos^2 \theta – sin^2 \theta\) \(cos^4 \theta – sin^4 \theta \) = \((cos^2\theta - sin^2\theta)(cos^2\theta+ sin^2\theta)\) (\(\because\) \(a^2-b^2 = (a-b) (a+b)\)) = \(\cos^2\theta - sin^2\theta \) (\(\because\) \(\cos^2\theta - sin^2\theta \) = 1). Correct option is: A) cos2 θ – sin2 θ |
|
734. |
If `sin theta + cos theta = a,` and `sin theta = cos theta = b`, then A)`a^2 + b^2 = 1 ` B)`a^2 - b^2 = 1` C)`a^2 + b^2 = 2` D)`a^2 - b^2 = 2`A. `a^2 + b^2 = 1 `B. `a^2 - b^2 = 1`C. `a^2 + b^2 = 2`D. `a^2 - b^2 = 2` |
Answer» Correct Answer - C | |
735. |
If `tan theta = 1`, then `sec theta` = …….A. 1B. `sqrt2`C. 2D. 0 |
Answer» Correct Answer - B | |
736. |
If `(sec theta - 1)(sec theta + 1) = 1/3,`then `cos theta` = …………A. `1/2 `B. `1/sqrt2`C. `sqrt3/2`D. `sqrt2/3` |
Answer» Correct Answer - C | |
737. |
If `(sin^(2)theta-5sintheta+3)/(cos^(2)theta)`=1, then `theta` can be _______.A. `30^(@)`B. `45^(@)`C. `60^(@)`D. `0^(@)` |
Answer» Correct Answer - A `sin^(2)theta-5sintheta+3=cos^(2)theta` `rArrsin^(2)theta-5sintheta+3=1-sin^(2)theta` `rArr2sin^(2)theta-5sintheta+2=0` `rArr(2sintheta-1)(sintheta-2)=0` `But sintheta=2` is not possible `thereforesintheta=(1)/(2)rArrtheta=30^(@)` |
|
738. |
Prove: `sec^4A(1-sin^4A)-2tan^2A=1` |
Answer» Proof: `LHS=sec^(4)A(1-sin^(4)A)-2tan^(2)A` `=sec^(4)A-sec^(4)A.sin^(4)A-2tan^(2)A` `=1/(cos^(4)A)-1/(cos^(4)A).sin^(4)A-2xx(sin^(2)A)/(cos^(2)A)` `…….(secA=1/(cosA),tanA=(sinA)/(cosA))` `=1/(cos^(4)A)-(sin^(4)A)/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)` `=((1-sin^(4)A))/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)` `=([1-(sin^(2)A)^(2)])/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)` `=((1+sin^(2)A)(1-sin^(2)A))/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)` `..........[a^(2)-b^(2)=(a+b)(a-b)]` `=((1+sin^(2)A)xxcos^(2)A)/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)...........[sin^(2)A+cos^(2)A=1]` `=(1+sin^(2)A)/(cos^(2)A)-(2 sin^(2)A)/(cos^(2)A)` `=(1+sin^(2)A-2sin^(2)A)/(cos^(2)A)` `=(1-sin^(2)A)/(cos^(2)A)` `(cos^(2)A)/(cos^(2)A)`......`[sin^(2)A+cos^(2)A=1]` `=1=RHS` `:.sec^(4)A(1-sin^(4)A)-2tan^(2)A=1`. |
|
739. |
If `cot theta = 3/2`, then tan `sec theta = …….A. `sqrt13/3`B. `9/16`C. `16/9`D. `5/4` |
Answer» Correct Answer - A | |
740. |
In the adjoning figure, if `angleB = 90^@, angleC = 30^@,`AC = 12 m, then AB = ………A. `12sqrt3`mB. `6sqrt3` mC. 12 mD. 6 m |
Answer» Correct Answer - D | |
741. |
`sqrt((1+sintheta)/(1-sintheta))` = __.A. `sectheta+tantheta`B. `sectheta-cottheta`C. `cosectheta+tantheta`D. `cosectheta-tantheta` |
Answer» Correct Answer - A `sqrt((1+sintheta)/(1-sintheta))=sqrt(((1+sintheta)+(1+sintheta))/((1-sintheta)(1+sintheta)))` `sqrt(((1+sintheta)^(2))/(1-sin^(2)theta))` `(1+sintheta)/(costheta)=sectheta+tantheta`. |
|
742. |
If `cosec theta = 2/(sqrt3)`, then theta = …..A. `0^@`B. `45^@`C. `30^@`D. `60^@` |
Answer» Correct Answer - D | |
743. |
If `costheta+((1)/(sqrt3))sintheta=(2)/(sqrt3)`, then find `theta` in circular measure.A. `pi^(c)/(10)`B. `pi^(c)/(9)`C. `pi^(c)/(6)`D. `pi^(c)/(3)` |
Answer» Correct Answer - C Given `costheta+((1)/(sqrt3))sintheta=(2)/(sqrt3)` `rArr((sqrt3)/(2))costheta+((1)/(2))sintheta=1` `rArrsin60^(@)costheta+sinthetacos60^(@)=1` `sin(60^(@)+theta)=sin90^(@)` `60^(@)+theta=90^(@)` `rArrtheta=30^(@)=(pi^(c))/(6)` |
|
744. |
If `A-B=45^(@) and tanA-tanB=sqrt(3)`, then `tanA*tanB`=_________ |
Answer» Correct Answer - `sqrt(3)-1)` | |
745. |
The value of `(sin A-cosA)^(2)+ (sinA+cosA)^(2)` is _________ |
Answer» Correct Answer - 2 | |
746. |
In a `DeltaABC, tan((A+C)/(2))` = ________. |
Answer» Correct Answer - B `A+B+C= 180^(@)`. |
|
747. |
If `A+B=60^(@)`, then the value of `sin A cosB + cos A sin B`=________ |
Answer» Correct Answer - `(sqrt(3))/(2)` | |
748. |
In `DeltaABC`, the value of `cos(A-B)-cos (C )` is _______ |
Answer» Correct Answer - `2 cosA cos B` | |
749. |
ABC is right triangle , right angled at A, then `tanB* tan C`=_____ |
Answer» Correct Answer - 1( B and C are complementary ) | |
750. |
If `tan(A+B)tan(A-B)` = ______________. |
Answer» Correct Answer - 1 | |