Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

The value of \(\frac{3tan10°-tan^310°}{1-3tan^210°}\) is:(a) \(\frac{1}{\sqrt{3}}\)(b) \(\frac{1}{2}\)(c) \(\frac{\sqrt{3}}{2}\)(d) \(\frac{1}{\sqrt{2}}\)

Answer»

(a) \(\frac{1}{\sqrt{3}}\)

\(\frac{3tan10°-tan^310°}{1-3tan^210°}\) = tan(3 x 10°) [∵ tan 3A = \(\frac{3tanA-tan^3A}{1-3tan^2A}\)]

= tan 30°

\(\frac{1}{\sqrt{3}}\)

702.

What is the value of \(\frac{5\,sin\,75°\,sin\,77°+2\,cos\,13°cos\,15°}{cos\,15°sin77°}\) - \(\frac{7\,sin\,81°}{cos\,90}\)?(a) –1 (b) 0(c) 1 (d) 2

Answer»

\(\frac{5\,sin\,75°\,sin\,77°+2\,cos\,13°cos\,15°}{cos\,15°sin77°}\) - \(\frac{7\,sin\,81°}{cos\,90}\)

\(\frac{5\,sin\,(90°-15°)\,sin\,77°+2\,cos\,(90°-77°)cos\,15°}{cos\,15°sin\,77°}\) - \(\frac{7\,sin\,(90°-9°)}{cos\,9°}\)

\(\frac{5\,cos\,15°\,sin\,77°+2\,sin\,77°cos\,15°}{cos\,15°sin\,77°}\) - \(\frac{7\,sin\,9°}{cos\,9°}\)

\(\frac{5\,cos\,15°\,sin\,77°}{cos\,15°sin\,77°}\) - \(\frac{7\,sin\,9°}{cos\,9°}\) = 7 - 7 = 0.

703.

The value of sin(-420°) (a) \(\frac{\sqrt{3}}{2}\)(b) \(-\frac{\sqrt{3}}{2}\)(c) \(\frac{1}{2}\)(d) \(-\frac{1}{2}\)

Answer»

(b) \(-\frac{\sqrt{3}}{2}\)

sin(-420°) = -sin(420°) [∵ sin(-θ) = -sin θ] 

= -sin(360° + 60°) 

= -sin 60° 

\(-\frac{\sqrt{3}}{2}\)

704.

What is the value of sin215° + sin2 20° + sin225° + ........ + sin275°?(a) tan215° + tan2 20° + tan225° + ........ + tan275° (b) cos215° + cos2 20° + cos225° + ........ + cos275° (c) cot215° + cot2 20° + cot225° + ........ + cot275° (d) sec215° + sec2 20° + sec225° + ........ + sec275°

Answer»

(b) cos2 75° + cos2 70° + ........ + cos2 15°

sin2 15° + sin2 20° + sin2 25° + ........ + sin2 75° 

= sin2 (90° – 75°) + sin2 (90° – 70°) + ... + sin2 (90° – 15°) 

= cos2 75° + cos2 70° + ........ + cos2 15°

705.

sin 120° cos 150° – cos 240° sin 330° is equal to(a) \(-\bigg(\frac{\sqrt3+1}{4}\bigg)\)(b) –1 c) 1 (d) \(\frac23\)

Answer»

(b)  -1 

sin 120° cos 150° – cos 240° sin 330° 

= sin (180° – 60°) cos (180° – 30°) – cos (180° + 60°) sin (360° – 30°)

= (sin 60°) . (– cos 30°) – (– cos 60°) (– sin 30°)

\(\frac{\sqrt3}{2}\times-\frac{\sqrt3}{2}-\big(\frac{-1}{2}\big)\big(\frac{-1}{2}\big)\) = \(-\frac34-\frac14=-\frac44=-1.\)

706.

State the signs of cosec 520°

Answer»

520° =360° + 160° 

∴ 520° and 160° are co-terminal angles. 

Since 90° < 160° < 180°, 

160° lies in the 2nd quadrant.

∴ 520° lies in the 2nd quadrant, 

∴ cosec 520° is positive.

707.

Express the following as a sum or difference of two trigonometric functions: 2cos 35° cos 75°

Answer»

2cos 35° cos75° 

= cos(35° + 75°) + cos (35° – 75°) 

= cos 110° + cos (-40)° 

= cos 110° + cos 40° … [∵ cos(-θ) = cos θ]

708.

Express the following as a sum or difference of two trigonometric functions:2sin 4x cos 2x

Answer»

2sin 4x cos 2x 

= sin(4x + 2x ) + sin (4x – 2x) 

= sin 6x + sin 2x

709.

Express the following as a sum or difference of two trigonometric functions: 2sin 2π/3 cos π/2

Answer»

2 sin 2π/3 cos π/2 = sin (\(\frac{2π}{3}+\frac{π}{2} \)) sin (\(\frac{2π}{3}-\frac{π}{2} \))

= sin \(\frac{7π}{6}+sin\, \frac{π}{6} \)

710.

Prove that cos5 θ = 16 cos5 θ – 20 cos3 θ + 5 cos θ.

Answer»

cos5 θ = cos(2θ + 3θ) = cos 2θ cos 3θ – sin 2θ sin 3θ 

= (2 cos2 θ – 1) (4 cos3 θ – 3 cos θ) – 2 sin θ cos θ (3 sin θ – 4 sin3 θ)

= 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 sin2 θ cos θ + 8 cos θ sin4 θ 

= 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6(1 – cos2 θ) cos θ + 8 cos θ (1 – cos2 θ)2 

= 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 cos θ + 6 cos3 θ + 8 cos 0(1+ cos4 θ – 2 cos2 θ) 

= 8 cos5 θ – 6 cos3 θ – 4 cos3 θ + 3 cos θ – 6 cos θ + 6 cos3 θ + 8 cos θ + 8 cos5 θ – 16 cos3 θ 

= 16 cos3 θ – 20 cos3 θ + 5 cos θ = RHS 

711.

The value of tan 1°.tan 2° tan 3° equal to(A) -1 (B) 1(C) π/2(D) 2

Answer»

Correct option is (B) 1

tan1° tan2° tan3° … tan89° 

= (tan 1° tan 89°) (tan 2° tan 88°) 

…(tan 44° tan 46°) tan 45° 

= (tan 1 ° cot 1 °) (tan 2° cot 2°) 

…(tan 44° cot 44°) . tan 45° 

…tan(∵ 90° – θ) = cot θ] 

= 1 x 1 x 1 x … x 1 x tan 45° = 1

712.

The value of tan 1°.tan 2° tan 3° equal to (A) -1 (B) 1(C) π/2(D) 2

Answer»

Correct answer is (B) 1

Explanation :

tan1° tan2° tan3° … tan89° 

= (tan 1° tan 89°) (tan 2° tan 88°) 

…(tan 44° tan 46°) tan 45° 

= (tan 1 ° cot 1 °) (tan 2° cot 2°) 

…(tan 44° cot 44°) . tan 45° 

…tan(∵ 90° – θ) = cot θ] 

= 1 x 1 x 1 x … x 1 x tan 45° = 1

713.

If A + B = 45°, show that (1 + tan A) (1 + tan B) = 2.

Answer»

A + B = 45° 

tan (A + B) = tan 45° = 1

(i.e) (tan A + tan B)/(1 - tan A tan B) = 1

tan A + tan B = 1 - tan A tan B ... (1) 

Now LHS = (1 + tan A) (1 + tan B) 

= tan A + tan B + tan A tan B + 1 

= (1 – tan A tan B) + (tan A tan B + 1) from (1) 

= 2 = RHS

714.

If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22\(\frac{1}{2}\).

Answer»

Given A + B = 45° 

tan (A + B) = tan 45°

\(\frac{tanA+tanB}{1-tanAtanB}\) = 1

tan A + tan B = 1 – tan A.tan B 

tan A + tan B + tan A tan B = 1

Add 1 on both sides we get, 

(1 + tan A) + tan B + tan A tan B = 2 

1(1+ tan A) + tan B (1 + tan A) = 2 

(1 + tan A) (1 + tan B) = 2 … (1) 

Put A = B = 22\(\frac{1}{2}\) in (1) we get 

(1 + tan 22\(\frac{1}{2}\)) (1 + tan 22\(\frac{1}{2}\)) = 2 

⇒ (1 + tan 22\(\frac{1}{2}\))2 = 2 

⇒ 1 + tan 22\(\frac{1}{2}\) = ±√2 

⇒ tan 22\(\frac{1}{2}\) = ±√2 – 1 

Since 22\(\frac{1}{2}\) is acute, tan 22\(\frac{1}{2}\) is positive and 

Therefore tan 22\(\frac{1}{2}\) = √2 – 1 

715.

Find the values of 2 sin 30° + cos 0° + 3 sin 90°

Answer»

2 sin 30° + cos 0° + 3 sin 90°

2 sin 30° + cos0° + 3 sin 90° = 2 (1/2 ) + 1 + 3(1) 

= 1 + 1 + 3 

∴ 2 sin 30° + cos 0° + 3 sin 90° = 5

716.

If `sin^(4) theta+cos^(4)theta=(1)/(2)`, then find `sin theta cos theta `.A. `pm(1)/(8)`B. `pm(1)/(4)`C. `pm1`D. `pm(1)/(2)`

Answer» Correct Answer - D
Use the identity `a^(2)+b^(2)=(a+b)^(2)-2ab`
717.

If `sin theta=(a)/(b) `, then `cos theta ` and `tan theta ` in term of a and b areA. `(sqrt(b^(2)-a^(2)))/(b) and (b)/(sqrt(b^(2)-a^(2)))`B. `(b)/(sqrt(b^(2)-a^(2))) and (a)/(sqrt(b^(2)-a^(2)))`C. `(sqrt(a^(2)-b^(2)))/(a) and (b)/(sqrt(a^(2)-b^(2)))`D. `(sqrt(b^(2)-a^(2)))/(b) and (a)/(sqrt(b^(2)-a^(2)))`

Answer» Correct Answer - D
Apply ` cos theta=(" Side adjacent to " theta )/(" Hypotenuse")`,
`tan theta =("Side opposite to " theta )/( " Side adjacent to " theta )`.
718.

If `sin alpha=(4)/(5)`, where `(0^(@) le alpha le 90^(@))`, then find `sin 2 alpha`.A. `(12)/(25)`B. `-(24)/(25)`C. `(25)/(24)`D. `(24)/(25)`

Answer» Correct Answer - D
Use ` sin 2 alpha=2 sin alpha cos alpha `.
719.

Express the following as a single trigonometric ratio:`sqrt(3) cos theta- sin theta `

Answer» Given
`sqrt(3) cos theta- sin theta `
`2((sqrt(3))/(2) cos theta-(1)/(2) sin theta)`
`=2(cos theta* cos 30^(@)- sin theta * sin30^(@))`
`=2(cos(theta+30^(@)))`
`implies sqrt(3) cos theta- sin theta=2 cos (theta+30^(@))`.
720.

The length of the minutes hand of a wall clock is 6 cm. Find the distance covered by the tip of the minutes hand in 25 minutesA. `(270)/(1)cm`B. `110 cm `C. `(88)/(7)cm `D. ` 110/7 cm `

Answer» Correct Answer - D
(i) The minutes hand covers an angle of `6^(@) ` per minute.
(ii) Use `l=rxx theta `
721.

The distance covered by the tip of a minute hand in 35 minutes is 33 cm. What is the length of the minute hand ?A. 6 cmB. 9 cmC. 10 cmD. 12 cm

Answer» Correct Answer - B
(i) Minutes hand moves `6^(@)` in one minute.
(ii) Use `l=rxx theta `
722.

The value of the expression(sin222°+ sin268°)/(cos222°+ cos268°)  + sin263 cos 63° sin27° is(A) 3 (B) 2 (C) 1 (D) 0

Answer»

Correct answer is  (B) 2

723.

Prove that :cos 27° + sin51° = sin63° + cos 39°

Answer»

Taking LHS = cos 27° + sin51o

We know that

cos θ = sin (90° - θ)

Here, θ = 27°

⇒ sin (90° - 27°)+ sin 51°

⇒ sin 63°+ sin 51°

We also know that

Sin θ = cos (90° - θ)

Here, θ = 51°

⇒ sin 63°+ cos (90° - 51°)

⇒ sin 63°+ cos 39° = RHS

Hence Proved

724.

Prove that : sin9°. sin27°. sin63°. sin81° = cos9°.cos27°.cos63°.cos81°

Answer»

Taking LHS

= sin 9° sin 27° sin 63° sin 81°

= cos (90° - 9°) cos (90° - 27°) cos (90° – 63°) cos (90°- 81°)

= cos 81° cos 63° cos 27° cos 9°

Or cos 9° cos 27° cos 63° cos 81° = RHS

Hence Proved

725.

Evaluate each of the following:cos60° cos45° - sin60° sin 45°

Answer»

cos60° cos45° - sin60° sin 45°

\(\frac{1}2\) x \(\frac{1}{\sqrt{2}}\) - \(\frac{\sqrt3}2\) x \(\frac{1}{\sqrt{2}}\)

\(\frac{1-\sqrt3}{2\sqrt2}\)

726.

sin2 30°+ 4cot2 45° - sec2 60° = ?(a) 0 (b) 1/4 (c) 4 (d) 1

Answer»

Correct answer is (b) 1/4

(Sin2 30° + 4 cot2 45° − sec2 60°) 

= [( 1/2 )2 + 4×(1)2 − (2)2

= (1/4 + 4 − 4) = 1/4

727.

Find the numerical value of the following :sin90° – cos0° + tan0° + tan45°

Answer»

We know that

Sin (90°) = 1

Cos (0°) = 1

Tan(0°) = 0

Tan(45°) = 1

Now putting the value, we get

= 1 – 1 + 0 + 1

= 1

728.

If x = y cos \(\frac{2π}{3}\) = z cos \(\frac{4π}{3}\), then what is xy + yz + zx equal to?

Answer»

\(x\) = y cos 120° = z cos 240° 

\(x\) = y cos (180° – 60°) = z cos (180° + 60°) 

\(x\) = – y cos 60° = – z cos 60° ( cos (180° – θ) = – cos θ = cos (180° + θ)) 

\(x\) = \(-\frac12\) y = \(-\frac{z}2\) ⇒ 2\(x\) = – y = – z 

\(\frac{x}{\frac12}\) = \(\frac{y}{(-1)}\) = \(\frac{z}{(-1)}\) = k 

\(x\) = \(\frac{k}{2}\) , y = – k, z = – k 

∴ xy + yz + zx = \(\big(\frac{k}{2}\big)\) (–k) + (–k) (–k) + (–k) \(\big(\frac{k}{2}\big)\) = \(\frac{-k^2}{2}\) + k2\(\frac{k^2}{2}\) = 0.

729.

If `P:Q= tan 2A: cos A and Q: R= cos 2A: sin 2A,` then `P:R` is _________A. tan 2AB. 2 sinAC. 1D. sec A

Answer» Correct Answer - D
730.

If `sintheta=(1)/(2)where 0^(@)lethetale180^(@), "then the possibel value of " theta " are` "____________.

Answer» Correct Answer - `30^(@)or150^(@)`
731.

\(\frac{1-tan^2\,30^\circ}{1+tan^2\,30^\circ}\) = ……..A) 1/2B) 1/√2C) √3/2D) 1

Answer»

Correct option is: A) \(\frac{1}{2}\)

\(\frac{1-tan^2 30^\circ}{1+tan^2 30^\circ} = \frac {1-(\frac 1{\sqrt3})^2}{1+ (\frac 1{\sqrt3})^2}\) ( \(\because\) tan \(30^\circ\) = \(\frac 1{\sqrt3}\))

\(\frac {1-\frac 13}{1+ \frac 13} = \frac {\frac {3-1}3}{\frac {3+1}3} = \frac 24 = \frac 12\)

Correct option is: A) \(\frac{1}{2}\)

732.

Prove `: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0`.

Answer» Proof: `LHS=2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta)+cos^(4)theta)+1`
`=2[(sin^(2)theta)^(3)+(cos^(2)theta)^(3)]-3(sin^(4) theta+cos^(4) theta)+1`
`=2[(sin^(2)theta+cos^(2) theta)(sin^(4) theta-sin^(2) theta.cos^(2) theta+cos^(4) theta)]-3(sin^(4)theta+cos^(4)theta)+1`
`......[(a^(3)+b^(3))=(a+b)(a^(2)-ab+b^(2)]`
`=2(1)(sin^(4) theta-sin^(2)theta.cos^(2) theta+cos^(4)theta)-3(sin^(4) theta+cos^(4)theta)+1`
`=2sin^(4) theta-2sin^(2) theta. cos^(2) theta+2cos^(4) theta-3sin^(4) theta-3cos^(4) theta+1`
`=-sin^(4) theta-cos^(4) theta-2sin^(2) theta. cos^(2) +1`
`=-(sin^(4) theta+2sin^(2) theta.cos^(2) theta+cos^(4) theta)+1`
`=-(sin^(2) theta+cos^(2) theta)^(2) +1`...........`[(a^(2) +2ab+b^(2))=(a+b)^(2)]`
`=-(1)^(2)=1`..........`(sin^(2) theta+cos^(2) theta=1)`
`=-1+1=0=RHS`
`:.2(sin^(6)theta+cos^(6)theta)-3(sin^(4) theta+cos^(4) theta)+1=0`.
733.

cos4 θ – sin4 θ =A) cos2 θ – sin2 θB) 2cos2 θ – 1C) 1 – 2sin2 θD) None

Answer»

Correct option is: A) \(cos^2 \theta – sin^2 \theta\)

\(cos^4 \theta – sin^4 \theta \) = \((cos^2\theta - sin^2\theta)(cos^2\theta+ sin^2\theta)\) (\(\because\) \(a^2-b^2 = (a-b) (a+b)\))

\(\cos^2\theta - sin^2\theta \) (\(\because\) \(\cos^2\theta - sin^2\theta \) = 1).

Correct option is: A) cos2 θ – sin2 θ

734.

If `sin theta + cos theta = a,` and `sin theta = cos theta = b`, then A)`a^2 + b^2 = 1 ` B)`a^2 - b^2 = 1` C)`a^2 + b^2 = 2` D)`a^2 - b^2 = 2`A. `a^2 + b^2 = 1 `B. `a^2 - b^2 = 1`C. `a^2 + b^2 = 2`D. `a^2 - b^2 = 2`

Answer» Correct Answer - C
735.

If `tan theta = 1`, then `sec theta` = …….A. 1B. `sqrt2`C. 2D. 0

Answer» Correct Answer - B
736.

If `(sec theta - 1)(sec theta + 1) = 1/3,`then `cos theta` = …………A. `1/2 `B. `1/sqrt2`C. `sqrt3/2`D. `sqrt2/3`

Answer» Correct Answer - C
737.

If `(sin^(2)theta-5sintheta+3)/(cos^(2)theta)`=1, then `theta` can be _______.A. `30^(@)`B. `45^(@)`C. `60^(@)`D. `0^(@)`

Answer» Correct Answer - A
`sin^(2)theta-5sintheta+3=cos^(2)theta`
`rArrsin^(2)theta-5sintheta+3=1-sin^(2)theta`
`rArr2sin^(2)theta-5sintheta+2=0`
`rArr(2sintheta-1)(sintheta-2)=0`
`But sintheta=2` is not possible
`thereforesintheta=(1)/(2)rArrtheta=30^(@)`
738.

Prove: `sec^4A(1-sin^4A)-2tan^2A=1`

Answer» Proof:
`LHS=sec^(4)A(1-sin^(4)A)-2tan^(2)A`
`=sec^(4)A-sec^(4)A.sin^(4)A-2tan^(2)A`
`=1/(cos^(4)A)-1/(cos^(4)A).sin^(4)A-2xx(sin^(2)A)/(cos^(2)A)`
`…….(secA=1/(cosA),tanA=(sinA)/(cosA))`
`=1/(cos^(4)A)-(sin^(4)A)/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)`
`=((1-sin^(4)A))/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)`
`=([1-(sin^(2)A)^(2)])/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)`
`=((1+sin^(2)A)(1-sin^(2)A))/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)`
`..........[a^(2)-b^(2)=(a+b)(a-b)]`
`=((1+sin^(2)A)xxcos^(2)A)/(cos^(4)A)-(2sin^(2)A)/(cos^(2)A)...........[sin^(2)A+cos^(2)A=1]`
`=(1+sin^(2)A)/(cos^(2)A)-(2 sin^(2)A)/(cos^(2)A)`
`=(1+sin^(2)A-2sin^(2)A)/(cos^(2)A)`
`=(1-sin^(2)A)/(cos^(2)A)`
`(cos^(2)A)/(cos^(2)A)`......`[sin^(2)A+cos^(2)A=1]`
`=1=RHS`
`:.sec^(4)A(1-sin^(4)A)-2tan^(2)A=1`.
739.

If `cot theta = 3/2`, then tan `sec theta = …….A. `sqrt13/3`B. `9/16`C. `16/9`D. `5/4`

Answer» Correct Answer - A
740.

In the adjoning figure, if `angleB = 90^@, angleC = 30^@,`AC = 12 m, then AB = ………A. `12sqrt3`mB. `6sqrt3` mC. 12 mD. 6 m

Answer» Correct Answer - D
741.

`sqrt((1+sintheta)/(1-sintheta))` = __.A. `sectheta+tantheta`B. `sectheta-cottheta`C. `cosectheta+tantheta`D. `cosectheta-tantheta`

Answer» Correct Answer - A
`sqrt((1+sintheta)/(1-sintheta))=sqrt(((1+sintheta)+(1+sintheta))/((1-sintheta)(1+sintheta)))`
`sqrt(((1+sintheta)^(2))/(1-sin^(2)theta))`
`(1+sintheta)/(costheta)=sectheta+tantheta`.
742.

If `cosec theta = 2/(sqrt3)`, then theta = …..A. `0^@`B. `45^@`C. `30^@`D. `60^@`

Answer» Correct Answer - D
743.

If `costheta+((1)/(sqrt3))sintheta=(2)/(sqrt3)`, then find `theta` in circular measure.A. `pi^(c)/(10)`B. `pi^(c)/(9)`C. `pi^(c)/(6)`D. `pi^(c)/(3)`

Answer» Correct Answer - C
Given
`costheta+((1)/(sqrt3))sintheta=(2)/(sqrt3)`
`rArr((sqrt3)/(2))costheta+((1)/(2))sintheta=1`
`rArrsin60^(@)costheta+sinthetacos60^(@)=1`
`sin(60^(@)+theta)=sin90^(@)`
`60^(@)+theta=90^(@)`
`rArrtheta=30^(@)=(pi^(c))/(6)`
744.

If `A-B=45^(@) and tanA-tanB=sqrt(3)`, then `tanA*tanB`=_________

Answer» Correct Answer - `sqrt(3)-1)`
745.

The value of `(sin A-cosA)^(2)+ (sinA+cosA)^(2)` is _________

Answer» Correct Answer - 2
746.

In a `DeltaABC, tan((A+C)/(2))` = ________.

Answer» Correct Answer - B
`A+B+C= 180^(@)`.
747.

If `A+B=60^(@)`, then the value of `sin A cosB + cos A sin B`=________

Answer» Correct Answer - `(sqrt(3))/(2)`
748.

In `DeltaABC`, the value of `cos(A-B)-cos (C )` is _______

Answer» Correct Answer - `2 cosA cos B`
749.

ABC is right triangle , right angled at A, then `tanB* tan C`=_____

Answer» Correct Answer - 1( B and C are complementary )
750.

If `tan(A+B)tan(A-B)` = ______________.

Answer» Correct Answer - 1