InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 601. |
If cos (α + β) = 0, then sin (α – β) can be reduced to(A) cos β (B) cos 2β (C) sin α (D) sin 2α |
|
Answer» Correct answer is (B) cos 2β |
|
| 602. |
\(\frac{sin\,5θ}{sin\,θ}\) is equal to(a) 16 cos4θ – 12 cos2θ – 1 (b) 16 cos4θ – 12 cos2θ + 1 (c) 16 cos4θ + 12 cos2θ – 1 (d) 16 cos4θ + 12 cos2θ + 1 |
|
Answer» (b) 16 cos4θ – 12 cos2θ + 1 \(\frac{sin\,5θ}{sin\,θ}\) = \(\frac{sin\,(2\theta+3\theta)}{sin\,\theta}\) = \(\frac{1}{sin\,θ}\) {sin 2θ cos3θ + cos 2θ sin 3θ} = \(\frac{1}{sin\,θ}\) \(\big\{\)2 sin θ cos θ (4 cos3 θ - 3 cosθ) + (2 cos2 θ -1)(3 sin θ - 4 sin3 θ)\(\big\}\) (∵ cos3A = 4cos3A – 3cosA, sin 3A = 3sinA – 4sin3A) = {2 cos θ (4 cos3θ – 3 cosθ) + (2 cos2θ – 1) (3 – 4 sin2θ)}. (Note the step) = 8 cos4θ – 6 cos2θ + 6 cos2θ – 3 – 8 cos2θ sin2θ + 4 sin2θ = 8 cos4θ – 3 – 8 cos2θ (1 – cos2θ) + 4 (1 – cos2θ) (∵ sin2θ + cos2θ = 1) = 8 cos4θ – 3 – 8 cos2θ + 8 cos4θ + 4 – 4 cos2θ = 16 cos4θ – 12 cos2θ + 1. |
|
| 603. |
An airplane propeller rotates 1000 times per minute. Find the number of degrees that a point on the edge of the propeller will rotate in 1 second. |
|
Answer» Number of rotations in 1 min = 1000 So number of rotations in 1 sec = 1000/60 = 50/3 The angle rotated in 1 rotation = 360° So, the angle rotated in 50/3 rotation = (50/3) x 360° = 6000° |
|
| 604. |
In the figure gIven below, ∆PQR is a right angled triangle. Write the names of sides opposite and adjacent to ∠P and ∠R. |
|
Answer» In right angled ∆PQR, i. side opposite to ∠P = QR ii. side opposite to ∠R = PQ iii. side adjacent to ∠P = PQ iv. side adjacent to ∠R = QR |
|
| 605. |
In the figure gIven below, ∆PQR is a right angled triangle. Write the names of sides opposite and adjacent to ∠P and ∠R. |
|
Answer» In right angled ∆PQR, i. side opposite to ∠P = QR ii. side opposite to ∠R = PQ iii. side adjacent to ∠P = PQ iv. side adjacent to ∠R = QR |
|
| 606. |
State whether the following are true or false. Justify your answer.(i) The value of tan A is always less than (ii) sec A = \(\frac{12}{5}\) for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin θ = \(\frac{4}{3}\) for some angle θ. |
|
Answer» (i) The value of tan 90° is greater than 1. Therefore, given statement is false. (ii) sec A = \(\frac{12}5\) ⇒ cos A = \(\frac{5}{12}\) as 12 is the hypotenuse largest side. Therefore, given statement is true. (iii) cos A is the abbreviation used for cosine of angle A Therefore, given statement is true. (iv) cot A is not the product of cot and A. Therefore, given statement is false. (v) Since, the hypotenuse is the longest side whereas in sin A = \(\frac{4}{3}\), 3 which is the denominator and cannot be hypotenous. |
|
| 607. |
If 8 tan A = 15, find sinA - cos A |
|
Answer» tan A = \(\frac{15}{8}\) ∴ sin A = \(\frac{15}{17}\) and Cos A =\(\frac{8}{17}\) ∴ Sin A - Cos A = \(\frac{15}{17}\) - \(\frac{8}{17}\) = \(\frac{7}{17}\) |
|
| 608. |
State whether the following are true or false. Justify your answer. (i) The value of tan A is always less than (ii) sec A = \(\frac{12}{5}\) for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin \(\theta\) = \(\frac{4}{3}\)for some angle \(\theta\) . |
|
Answer» (i) The value of tan 90° is greater than 1. Therefore, given statement is false. (ii) sec A = \(\frac{12}{5}\) \(\implies\) cos A = \(\frac{5}{12}\) as 12 is the hypotenuse largest side. Therefore, given statement is true. (iii) cos A is the abbreviation used for cosine of angle A Therefore, given statement is true. (iv) cot A is not the product of cot and A. Therefore, given statement is false. (v) Since, the hypotenuse is the longest side whereas in sin A =\(\frac{4}{3}\) , 3 which is the denominator and cannot be hypotenous. |
|
| 609. |
If, sin50° = α then write the value of cos 50° in terms of α. |
|
Answer» We know that cos2 θ + sin2 θ = 1 ⇒ cos2 50° + sin2 50° = 1 ⇒ cos 2 50° = 1 – sin2 50° ⇒ cos 50° = √(1 – sin2 50°) And Given that sin 50° = a ⇒ cos 50° = √(1 – a2 ) |
|
| 610. |
Find the value of \(\frac{1}{sin10°} - 4\, sin70°.\) |
|
Answer» sin(3 × 10°) = sin(30°) = \(\frac{1}{2}\) ⇒ 3 sin10° - 4 sin310° = \(\frac{1}{2}\) ⇒ 8 sin310° - 6 sin10° + 1 = 0 After solving this polynomial in sin10°, we get ⇒ sin10° = 0.17365 sin70° = sin(10° + 60°) = sin10° cos60° + cos10° sin60° = 0.17365 × \(\frac{1}{2}\) + 0.9848 × \(\frac{\sqrt3}{2}\) = 0.086825 + 0.852868 = 0.93693 \(\frac{1}{sin 10°}\) - 4 sin70° = \(\frac{1}{0.17365} - 4(0.93693)\) = 5.75871 - 3.74772 = 2.01099 (2.011 Approx) |
|
| 611. |
Write ‘True’ or ‘False’ and justify your answer.(tan θ + 2) (2 tan θ + 1) = 5 tan θ + sec2 θ. |
|
Answer» False Justification: L.H.S = (tan θ+2) (2 tan θ+1) = 2 tan2 θ + tan θ + 4 tan θ + 2 = 2 tan2θ+5 tan θ+2 Since, sec2 θ – tan2 θ = 1, we get, tan2θ = sec2 θ-1 = 2(sec2 θ-1) +5 tan θ+2 = 2 sec2 θ-2+5 tan θ+2 = 5 tan θ+ 2 sec2 θ ≠R.H.S ∴, L.H.S ≠ R.H.S |
|
| 612. |
Find the value off the following:(sin72° + cos18°)( sin72° - cos18°) |
|
Answer» (sin 72° + cos 18°)( sin 72° - cos 18°) Using the identity , (a - b)(a + b) = a2 – b2 = (sin 72°)2 - (cos 18°)2 = {cos(90° - 72°)}2 - (cos 18°)2 [∵ Sin θ = cos (90° - θ)] = (cos 18°)2 - (cos 18°)2 = 0 |
|
| 613. |
If cosA = x, express sin A in terms of x. |
|
Answer» We know that cos2 θ + sin2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ ⇒ sin θ = √(1 – cos2 θ) And Given that cos θ = x ⇒ sin θ = √(1– x2) |
|
| 614. |
Which of following values is not a possible value of sin x ?A) 3/4B) 3/5C) 4/5D) 5/4 |
|
Answer» Correct option is: D) \(\frac 54\) \(\because\) -1 \(\leq\) sin x \(\leq\) 1 Any value which is greater than 1 or less than -1 is not a possible value of sin x. \(\because\) \(\frac 54\) > 1 \(\therefore\) \(\frac 54\) is not a possible value of sin x. Correct option is: D) \(\frac{5}{4}\) |
|
| 615. |
If Sin A = 24/25 then Cot A = …………A) 25/24B) 7/24C) 24/7D) 25/7 |
|
Answer» Correct option is: B) \(\frac{7}{24}\) We have sin A = \(\frac{24}{25}\) \(\therefore\) \(cos^2A = 1-sin^2A = 1-(\frac {24}{25})^2 = 1- \frac {576}{625} = \frac {625 -576}{625}\) = \(\frac {49}{625} = \frac {7^2}{25^2} = (\frac 7{25})^2\) \(\therefore\) cos A = \(\frac 7 {25}\) \(\therefore\) cot A = \(\frac {cos\, A}{sin \, A} = \frac {\frac 7{25}}{\frac {24}{25}} = \frac 7{24}\) Correct option is: B) \(\frac{7}{24}\) |
|
| 616. |
Prove that cosec2 72° − tan2 18° = 1 |
|
Answer» cosec2 72° − tan2 18° = 1 LHS = cosec2 72° – tan2 18° = cosec2 72° – tan2 (90 – 72)° = cosec2 72° – cot2 72° = 1 = RHS |
|
| 617. |
If cos40° = p, then write the value of sin 40° in terms of p. |
|
Answer» We know that cos2 θ + sin2 θ = 1 ⇒ cos2 40° + sin2 40° = 1 ⇒ sin2 40° = 1 – cos2 40° ⇒ sin 40° = √(1 – cos2 40°) And Given that cos 40° = p ⇒ sin 40° = √(1– p2) |
|
| 618. |
Which of the following is not defined ? A) Tan0° B) Tan 90° C) Cot 90° D) Sec 0° |
|
Answer» Correct option is: B) Tan 90° \(\because\) (a) tan \(0^\circ\) = 0 (b) tan \(90^\circ\) = \(\theta\) (Not defined) (c) cot \(90^\circ\) = 0 (d) sec \(0^\circ\) = 1 Correct option is: B) Tan 90° |
|
| 619. |
\(\frac{1-Tan^2\,45^\circ}{1+Tan^2\,45^\circ}\) can not be expressed as ………A) Sin 0°B) cos 90° C) Sin 0° Cos 90° D) Sin 60° |
|
Answer» Correct option is: D) Sin 60° \(\frac{1-Tan^2 45^\circ}{1+Tan^2 45^\circ}\) = \(\frac {1-1^2}{1+1^2} = \frac {1-1}{1+1} = \frac 02 = 0\) (\(\because\) tan \(45^\circ\) = 1) \(\because\) sin \(0^\circ\) = 0, cos \(90^\circ\) = 0 and sin \(0^\circ\). cos \(90^\circ\) = 0 \(\times\) 0 = 0 But sin \(60^\circ\) = \(\frac {\sqrt3}{2} \neq 0\) \(\therefore\) \(\frac{1-Tan^2 45^\circ}{1+Tan^2 45^\circ}\) can not be expressed as sin \(60^\circ\). Correct option is: D) Sin 60° |
|
| 620. |
Evaluate:(sin 72° + cos 18°) (sin 72° – cos 18°) |
|
Answer» We know that, sin (90 – θ) = cos θ So, the given can be expressed as (sin 72° + cos 18°) (sin (90 – 18)° – cos 18°) = (sin 72° + cos 18°) (cos 18° – cos 18°) = (sin 72° + cos 18°) x 0 = 0 |
|
| 621. |
Evaluate:cosec 31° – sec 59° |
|
Answer» We have, cosec 31° – sec 59° Since, cosec (90 – θ) = cos θ So, cosec 31° – sec 59° = cosec (90° – 59°) – sec 59° = sec 59° – sec 59° = 0 Thus, cosec 31° – sec 59° = 0 |
|
| 622. |
Prove:sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0 |
|
Answer» Taking the L.H.S, sinθ sin (90° – θ) – cos θ cos (90° – θ) = sin θ cos θ – cos θ sin θ [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ] = 0 |
|
| 623. |
Prove that: (sin θ – cosec θ)2 + (cos θ – sec θ)2 = cot2 θ + tan2 θ – 1 |
|
Answer» (sin θ – cosec θ)2 + (cos θ – sec θ)2 = sin2 θ + cosec2 θ – 2 sinθ . cosecθ . + cos2 θ + sec2 θ – 2 cosθ . sec θ = (sin2 θ + cos2 θ) + cosec2 θ + sec2 θ – 2 – 2 = 1 + (1 + cot2 θ) + (1 + tan2 θ) – 2 – 2 = cot2 θ + tan2 θ + 3 – 4 = cot2 θ + tan2 θ – 1 |
|
| 624. |
State the quadrant in which 6 lies if sin θ < 0 and cos θ < 0 |
|
Answer» sin θ < 0 sin θ is negative in 3rd and 4th quadrants, cos θ < 0 cos θ is negative in 2nd and 3rd quadrants. ∴ θ lies in the 3rd quadrant. |
|
| 625. |
State the quadrant in which 6 lies if tan θ < 0 and sec θ > 0 |
|
Answer» tan θ < 0 tan θ is negative in 2nd and 4th quadrants, sec θ > 0 sec θ is positive in 1st and 4th quadrants. ∴ θ lies in the 4th quadrant. |
|
| 626. |
If Sin A = 3/5 then Cos A =A) 3/4B) 4/5B) 5/4D) 4/3 |
|
Answer» Correct option is: B) \(\frac{4}{5}\) We have sin A = \(\frac 35\) Now \(cos^2\, A = 1 -sin^2A = 1 -(\frac 35)^2 = 1 - \frac 9{25} \) \(= \frac {25-9}{25} = \frac {16}{25} = (\frac 45)^2\) \(\therefore\) cos A = \(\frac{4}{5}\) Correct option is: B) \(\frac{4}{5}\) |
|
| 627. |
Prove that cos 81° − sin 9° = 0. |
|
Answer» LHS = cos81° – sin9° = cos(90° - 9°)- sin9° = sin9° – sin9° = 0 = RHS |
|
| 628. |
Write using trigonometric tables, prove that:(i) cos 81° - sin 9° = 0(ii) tan 71° - cot 19° = 0(iii) cosec 80° - sec 10° = 0(iv) cosec272° - tan218° = 1(v) cos275° + cos215° = 1 |
|
Answer» (i) LHS = cos 81° - sin 9° = cos(90° - 9°) - sin 9° = sin 9° - sin 9° = 0 = RHS (ii) LHS = tan 71° - cot 19° = tan(90° - 19°) - cot 19° = cot 19° - cot 19° = 0 = RHS (iii) LHS = cosec 80° - sec 10° = cosec (90° - 10°) - sec 10° = sec 10° - sec 10° = 0 = RHS (iv) LHS = cosec2 72° - tan2 18° = cosec2 (90° - 18°) - tan2 18° = sec2 18° - tan2 18° = 1 = RHS (v) LHS = cos2 75° - cos2 15° = cos2 (90° - 15°) + cos2 15° = sin2 15° + cos2 15° = 1 = RHS |
|
| 629. |
Without using trigonometric table, evaluate:(i) \(\frac{cos35°}{sin55°}\)(ii) \(\frac{cosec42°}{sec48°}\)(iii) \(\frac{cot38°}{tan52°}\) |
|
Answer» (i) \(\frac{cos35°}{sin55°}\) = \(\frac{cos(90°-55°)}{sin55°}\) = \(\frac{sin55°}{sin55°}\) [∵ sin(90 - θ) = cos θ] = 1 (ii) \(\frac{cosec42°}{sec48°}\) = \(\frac{cosec(90°-48°)}{sec48°}\) = \(\frac{sec48°}{sec48°}\) [∵ sec(90 - θ) = cosec θ] = 1 (iii) \(\frac{cot38°}{tan52°}\) = \(\frac{cot(90°-52°)}{tan52°}\) = \(\frac{tan52°}{tan52°}\) [∵ tan(90 - θ) = cot θ] = 1 |
|
| 630. |
Without using trigonometric table, evalute:(i) \(\frac{sin16°}{cos74°}\)(ii) \(\frac{sec11°}{cosec79°}\)(iii) \(\frac{tan21°}{cot63°}\) |
|
Answer» (i) \(\frac{sin16°}{cos74°}\) = \(\frac{sin(90°-74°)}{cos74°}\) = \(\frac{cos74°}{cos74°}\) [∵ sin(90 - θ) = cos θ] = 1 (ii) \(\frac{sec11°}{cosec79°}\) = \(\frac{sec(90°- 79°)}{cosec79°}\) = \(\frac{cosec79°}{cosec79°}\) [∵ sec(90 - θ) = cosec θ] = 1 (iii) \(\frac{tan27°}{cot63°}\) = \(\frac{tan(90°- 63°)}{cot63°}\) = \(\frac{cos63°}{cos63°}\) [∵ tan(90 - θ) = cot θ] = 1 |
|
| 631. |
Without using trigonometric tables, prove that(i) \(\frac{2sin68^\circ}{cos22^\circ}-\frac{2cot15^\circ}{5tan75^\circ}- \frac{3tan45^\circ{tan20^\circ}tan40^\circ{tan50^\circ}tan70^\circ}5\) = 12sin68°/cos22°-2cot15°/5tan75°-3tan45°tan20°tan40°tan50°tan70°/5 = 1(ii) \(\frac{7cos55^\circ}{3sin35^\circ}-\frac{4(cos70^\circ{cosec20^\circ})}{3(tan5^\circ{tan25^\circ}tan45^\circ{tan65^\circ{tan85^\circ}})}\) = 17cos55°/3sin35° - 4(cos70°cosec20°)/3(tan5°tan45°tan65°tan85°) |
|
Answer» (i) LHS = \(\frac{2sin68^\circ}{cos22^\circ}-\frac{2cot15^\circ}{5tan75^\circ}- \frac{3{tan45^\circ}{tan20^\circ}{tan40^\circ}{tan50^\circ}{tan70^\circ}}5\) = \(\frac{2sin68^\circ}{sin(90^\circ-22^\circ)}-\frac{2cot15^\circ}{5tan75^\circ}- \frac{3\times1\times{cot(90^\circ-20^\circ)}\times{cot(90^\circ-40^\circ)}\times{tan50^\circ}\times{tan70^\circ}}5\) = \(\frac{2sin68^\circ}{sin68^\circ}-\frac{2cot15^\circ}{5cot15^\circ}- \frac{3\times{cot70^\circ}{tan50^\circ}tan70^\circ}5\) = 2 - \(\frac{2}5\)- \(\frac{3\times{\frac{1}{tan70^\circ}}\times{\frac{1}{tan50^\circ}}\times{tan50^\circ}\times{tan70^\circ}}5\) = 2 - \(\frac{2}5\)- \(\frac{3}5\) = \(\frac{10-2-3}5\) = \(\frac{5}5\) = 1 = RHS (ii) LHS = \(\frac{7cos55^\circ}{3sin35^\circ}-\frac{4(cos70^\circ{cosec20^\circ})}{3(tan5°tan25^\circ{tan45^\circ}tan65^\circ{tan85^\circ})}\) = \(\frac{7cos55^\circ}{3cos(90^\circ-35^\circ)}-\frac{4(sin(90^\circ-70^\circ)cosec 20^\circ}{{3cot(90^\circ- 5^\circ)}\times{cot(90^\circ-25^\circ)}\times1\times{tan65^\circ}\times{tan85^\circ}}\) = \(\frac{7cos55^\circ}{3cos55^\circ}\) - \(\frac{{4(sin20^\circ}{cosec20^\circ})}{{3({cot85^\circ}{cot65^\circ}{tan65^\circ}{tan85^\circ}}}\) = \(\frac{7}3\) - \(\frac{{4(sin20^\circ}\times{\frac{1}{tan20^\circ}})}{{3({\frac{1}{tan85^\circ}}\times{\frac{1}{tan65^\circ}}{tan65^\circ}{tan85^\circ)}}}\) = \(\frac{7}3\) - \(\frac{4}3\) = \(\frac{3}3\) = 1 = RHS |
|
| 632. |
Evaluate tan65°/cot25° |
|
Answer» We know: cot A = tan (90° – A) So, cot 25° = tan (90° – 25°) = tan 65° i.e., tan 65°/cot 25° = tan 65°/ tan 65°=1 |
|
| 633. |
tan 5° × tan 30° × 4 tan 85° is equal to A. 4/√3 B. 4√3C. 1 D. 4 |
|
Answer» ⇒ tan 5° x tan 30° x 4 tan 85° As, tan (90 – θ) = cot θ Therefore, ⇒ tan (90 – 85) x tan 30° x 4 tan 85° ⇒ cot 85° × tan 85° × 4 × tan 30° ⇒ 1/tan 85 × tan 85° × 4 × tan 30° As we know, tan 30° = 1/√3 ⇒ 4 × tan 30° ⇒ 4 × (1/√3) = 4/√3 tan 5° × tan 30° × 4 tan 85°= 4tan 5°× tan 85° × tan 30° = 4tan 5°× cot5° × tan 30° = 4×1×tan 30° = 4tan 30° = 4/√3 (A) |
|
| 634. |
Prove that cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0. |
|
Answer» L.H.S. = cosec (65° + θ) - sec (25° - θ) - tan (55° - θ) + cot (35° + θ) = cosec (65° + θ) - sec (90° – (65° + θ)) - tan (90° – (35° + θ)) + cot (35° + θ) = cosec (65° + θ) - cosec (65° + θ)) - cot (35° + θ) + cot (35° + θ) = 0 = R.H.S. |
|
| 635. |
tan 5° tan 25° tan 30° tan 65° tan 85° = ?(a) √3(b) 1√3(c) 1(d) none of these |
|
Answer» Correct answer = (b) 1/√3 We have tan 5° tan 25° tan 30° tan 65° tan 85° = tan 5° tan 25° tan 30° tan(90° − 25°) tan(90° − 5°) = tan 5° tan 25° × 1/√3 × cot 25° cot 5° [∵ tan(90° − θ) = cot θ and tan 30° = 1/√3 ] = 1/√3 |
|
| 636. |
Evaluate:tan 35° tan 40° tan 50° tan 55° |
|
Answer» tan 35° = tan (90° - 55°) = cot 55° Cot 55 tan 55∙ cot 50 tan 50 = 1 |
|
| 637. |
Evaluate:\(\frac{tan\, 35°}{cot\, 55°} + \frac{cot\, 78°}{tan\, 12°} - 1\) |
|
Answer» We have, [∵ cot (90 – θ) = tan θ and tan (90 – θ) = cot θ] \(\frac{tan\, 35°}{cot\, 55°} + \frac{cot\, 78°}{tan\, 12°} - 1\) = \(\frac{tan\, (90°-\, 35°)}{cot\, 55°} + \frac{cot\,(90° -\, 12°)}{tan\, 12°} - 1\) = \(\frac{cot\, 55°}{cot\, 55°} + \frac{tan\, 12°}{tan\, 12°} - 1\) = 1 + 1 – 1 = 1 |
|
| 638. |
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2. |
|
Answer» Given: sin θ +2 cos θ = 1 Squaring on both sides, (sin θ +2 cos θ)2 = 1 ⇒ sin2 θ + 4 cos2 θ + 4sin θcos θ = 1 Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ ⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θcos θ = 1 ⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θcos θ = 1 ⇒ – 4 sin2 θ – cos2 θ + 4sin θcos θ = – 4 ⇒ 4 sin2 θ + cos2 θ – 4sin θcos θ = 4 We know that, a2+ b2 – 2ab = ( a – b)2 So, we get, (2sin θ – cos θ)2 = 4 ⇒ 2sin θ – cos θ = 2 Hence proved. |
|
| 639. |
Show that tan 48° tan 16° tan 42° tan 74° = 1 |
|
Answer» L.H.S. = tan 48° tan 16° tan 42° tan 74° = tan 48°. tan 16° . tan(90° – 48°) . tan(90° – 16°) = tan 48° . tan 16° . cot 48° . cot 16° [∵ tan (90 – θ) = cot θ] = tan 48° . tan 16° . \(\frac{1}{tan \,48^∘}\) . \(\frac{1}{tan \,16^∘}\) [∵ cot θ = \(\frac{1}{tan \,θ}\)] = 1 = R.H.S. ∴ L.H.S. = R.H.S. |
|
| 640. |
If cosec θ = 2 and cot θ = √3p where ‘θ’ is an acute angle, then p =A) 2B) 1C) 1/2D) √3 |
|
Answer» Correct option is: B) 1 Given that cosec \(\theta\) = 2 and cot \(\theta\) = \(\sqrt {3P}\) = \(cot^2 \theta\) = 3P = \(cosec^2 \theta -1 \) = 3P ( \(\because\) \(cot^2 \theta\) = \(cosec^2 \theta -1 \)) = 4-1 = 3P (\(\because\) cosec \(\theta\) = 2) = 3P = 3 = P = \(\frac 33\) = 1 Correct option is: B) 1 |
|
| 641. |
Write the value of sec2θ (1 + sinθ)(1 - sinθ) |
|
Answer» sec2θ (1 + sinθ)(1 - sinθ) = sec2 θ(1 − sin2 θ) = 1/cos2 θ × cos2 θ = 1 |
|
| 642. |
Write the value of sin2θ cos2θ(1 + tan2θ)(1 + cot2θ) |
|
Answer» sin2θ cos2θ(1 + tan2θ)(1 + cot2θ) = sin2 θ cos2 θ sec2 θ cosec2 θ = sin2 θ × cos2 θ × 1/cos2 θ × 1/sin2 θ = 1 |
|
| 643. |
Write the value of cosec2θ(1 + cosθ)(1 - cosθ). |
|
Answer» cosec2θ(1 + cosθ)(1 - cosθ) = cosec2θ(1 − cos2 θ) = 1/sin2 θ × sin2 θ = 1 |
|
| 644. |
If θ and ϕ are acute angles such that sin θ = 1/2 and cos ϕ = 1/3 , than θ + ϕ lies in(a) \(\bigg]\frac{π}{3},\fracπ2\bigg[\)(b) \(\bigg]\frac{2π}{3},\frac{5π}3\bigg[\)(c) \(\bigg]\frac{π}{2},\frac{2π}3\bigg[\)(d) \(\bigg]\frac{5π}{6},π\bigg[\) |
|
Answer» (c) \(\bigg]\frac{π}{2},\frac{2π}3\bigg[\) sin θ = \(\frac12\) ⇒ sin θ = sin \(\fracπ6\) ⇒ θ = \(\fracπ6\) (∵ θ and φ are acute angles lying in the first quadrant) …(i) Now cos ϕ = \(\frac13\) ⇒ 0 < cos ϕ < \(\frac12\) ⇒ cos \(\fracπ2\) < cos ϕ < cos \(\fracπ3\) ⇒ \(\fracπ2\) < ϕ < \(\fracπ3\) …(ii) ∴ From (i) and (ii) \(\fracπ2\) + \(\fracπ6\) < θ + ϕ < \(\fracπ3\) + \(\fracπ6\) ⇒ \(\fracπ2\) < θ + ϕ < \(\frac{2π}3\) ⇒ θ + ϕ lies in the open interval \(\bigg]\frac{π}{2},\frac{2π}3\bigg[\). Hence (c) is the correct option. |
|
| 645. |
The angle A lies in the third quadrant and it satisfies the equation 4 (sin2x + cos x) = 1. What is the measure of angle A? |
|
Answer» 4 sin2x + 4 cos \(x\) = 1 ⇒ 4 sin2x + 4 cos \(x\) – 1 = 0 ⇒ 4 (1 – cos2x) + 4 cos \(x\) – 1 = 0 ⇒ – 4 cos2x + 4 cos x + 3 = 0 ⇒ 4 cos2x – 4 cos \(x\) – 3 = 0 ⇒ 4 cos2x – 6 cos \(x\) + 2 cos \(x\) – 3 = 0 ⇒ 2 cos \(x\) (2 cos \(x\) – 3) + 1 (2 cos \(x\) – 3) = 0 ⇒ (2 cos \(x\) + 1) (2 cos \(x\) – 3) = 0 ⇒ cos \(x\) = \(-\frac12\) and cos \(x\) = \(\frac32\) (not possible) Now cos \(x\) = \(-\frac12\) Since A lies in the third quadrant and cos A = \(-\frac12\), therefore, cos A = cos (180º + 60º) = cos 240º ⇒ A = 240º. |
|
| 646. |
If sec θ = \(\frac{13}{5}\), then what is the value of \(\frac{\text{2 sin θ - 3 cos θ}}{\text{4 sin θ - 9 cos θ}}\)?(a) 1 (b) 3 (c) 2 (d) 4 |
|
Answer» (b) 3 Given, sec θ = \(\frac{13}{5}\) ⇒ sec2 θ = \(\frac{169}{25}\) ⇒ 1 + tan2θ = \(\frac{169}{25}\) (∵ sec2θ – tan2θ = 1) ⇒ tan2 θ = \(\frac{169}{25}\) - 1 = \(\frac{144}{25}\) ⇒ tan θ = \(\frac{12}{5}\) ∴ \(\frac{2\,sin\,\theta-3\,cos\,\theta}{4\,\sin\,\theta-9\,cos\,\theta}\) = \(\frac{\frac{2\,sin\,\theta}{cos\,\theta}-3}{\frac{4\,sin\,\theta}{cos\,\theta}-9}\) (On dividing each term of numerator and denominator by cos θ) \(= \frac{2\,tan\,\theta-3}{4\,tan\,\theta-9}=\frac{2\times\frac{12}{5}-3}{4\times\frac{12}{5}-9}\) = \(\frac{24-15}{48-45}=\frac93=3.\) |
|
| 647. |
Write the value of `sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).`A. -1B. 2C. 0D. 1 |
|
Answer» Correct Answer - D `cos(90-theta)=sintheta and sin(90-theta)=costheta`. |
|
| 648. |
What is the value of √3 cosec 20° – sec 20° ? |
|
Answer» √3 cosec 20° – sec 20° = \(\frac{\sqrt3}{sin\,20°}\) - \(\frac{1}{cos\,20°}\) = \(\frac{\sqrt3\,cos\,20°-sin\,20°}{sin20°\,cos20°}\) = \(\frac{4}{2\,sin20°\,cos20°}\bigg(\frac{\sqrt3}{2}cos\,20°-\frac12sin\,20°\bigg)\) (Multiplying numerator and denominator by 4) = \(\frac{4}{sin\,40°}\) (sin 60° cos 20° – cos 60° sin 20°) (∵ sin 2θ = 2 sin θ cos θ) = \(\frac{4}{sin\,40°}\) (sin (60° – 20°)) (∵ sin (A – B) = sin A cos B – cos A sin B) = \(\frac{4}{sin\,40°}\). sin 40° = 4. |
|
| 649. |
If sin 56° = x, then express sin 34° in terms of x. |
|
Answer» Given sin 56° = x We know that sin θ = cos (90° - θ) Here, θ = 56° ⇒ cos (90° - 56°) = x ⇒ cos 34° = x |
|
| 650. |
If sin 37° = a, then express cos 53° in terms of a. |
|
Answer» Given sin 37° = a We know that sin θ = cos (90° - θ) Here, θ = 37° ⇒ cos (90° - 37°) = a ⇒ cos 53° = a |
|