Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

601.

If cos (α + β) = 0, then sin (α – β) can be reduced to(A) cos β (B) cos 2β (C) sin α (D) sin 2α

Answer»

Correct answer is (B) cos 2β

602.

\(\frac{sin\,5θ}{sin\,θ}\) is equal to(a) 16 cos4θ – 12 cos2θ – 1 (b) 16 cos4θ – 12 cos2θ + 1 (c) 16 cos4θ + 12 cos2θ – 1 (d) 16 cos4θ + 12 cos2θ + 1

Answer»

(b) 16 cos4θ – 12 cos2θ + 1 

\(\frac{sin\,5θ}{sin\,θ}\) = \(\frac{sin\,(2\theta+3\theta)}{sin\,\theta}\)

\(\frac{1}{sin\,θ}\) {sin 2θ cos3θ + cos 2θ sin 3θ}

\(\frac{1}{sin\,θ}\) \(\big\{\)2 sin θ cos θ (4 cos3 θ - 3 cosθ) + (2 cos2 θ -1)(3 sin θ - 4 sin3 θ)\(\big\}\)

(∵ cos3A = 4cos3A – 3cosA, sin 3A = 3sinA – 4sin3A) 

= {2 cos θ (4 cos3θ – 3 cosθ) + (2 cos2θ – 1) (3 – 4 sin2θ)}.  (Note the step) 

= 8 cos4θ – 6 cos2θ + 6 cos2θ – 3 – 8 cos2θ sin2θ + 4 sin2θ 

= 8 cos4θ – 3 – 8 cos2θ (1 – cos2θ) + 4 (1 – cos2θ)         (∵ sin2θ + cos2θ = 1) 

= 8 cos4θ – 3 – 8 cos2θ + 8 cos4θ + 4 – 4 cos2θ 

= 16 cos4θ – 12 cos2θ + 1.

603.

An airplane propeller rotates 1000 times per minute. Find the number of degrees that a point on the edge of the propeller will rotate in 1 second.

Answer»

Number of rotations in 1 min = 1000

So number of rotations in 1 sec = 1000/60 = 50/3

The angle rotated in 1 rotation = 360°

So, the angle rotated in 50/3 rotation = (50/3) x 360° = 6000°

604.

In the figure gIven below, ∆PQR is a right angled triangle. Write the names of sides opposite and adjacent to ∠P and ∠R.

Answer»

In right angled ∆PQR, 

i. side opposite to ∠P = QR 

ii. side opposite to ∠R = PQ 

iii. side adjacent to ∠P = PQ 

iv. side adjacent to ∠R = QR

605.

In the figure gIven below, ∆PQR is a right angled triangle. Write the names of sides opposite and adjacent to ∠P and ∠R.

Answer»

In right angled ∆PQR, 

i. side opposite to ∠P = QR 

ii. side opposite to ∠R = PQ 

iii. side adjacent to ∠P = PQ 

iv. side adjacent to ∠R = QR

606.

State whether the following are true or false. Justify your answer.(i) The value of tan A is always less than (ii) sec A = \(\frac{12}{5}\) for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin θ = \(\frac{4}{3}\) for some angle θ.

Answer»

(i) The value of tan 90° is greater than 1. Therefore, given statement is false. 

(ii)  sec A = \(\frac{12}5\) ⇒ cos A = \(\frac{5}{12}\) as 12 is the hypotenuse largest side. Therefore, given statement is true. 

(iii) cos A is the abbreviation used for cosine of angle A Therefore, given statement is true. 

(iv) cot A is not the product of cot and A. Therefore, given statement is false. 

(v) Since, the hypotenuse is the longest side whereas in sin A = \(\frac{4}{3}\), 3 which is the denominator and cannot be hypotenous.

607.

If 8 tan A = 15, find sinA - cos A

Answer»

tan A = \(\frac{15}{8}\) 

∴ sin A = \(\frac{15}{17}\) 

and Cos A =\(\frac{8}{17}\)

∴ Sin A - Cos A = \(\frac{15}{17}\) - \(\frac{8}{17}\) = \(\frac{7}{17}\)

608.

State whether the following are true or false. Justify your answer. (i) The value of tan A is always less than (ii) sec A = \(\frac{12}{5}\) for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin \(\theta\) = \(\frac{4}{3}\)for some angle \(\theta\) .

Answer»

(i) The value of tan 90° is greater than 1. Therefore, given statement is false. 

(ii) sec A = \(\frac{12}{5}\) \(\implies\) cos A = \(\frac{5}{12}\) as 12 is the hypotenuse largest side. Therefore, given statement is true. 

(iii) cos A is the abbreviation used for cosine of angle A Therefore, given statement is true. 

(iv) cot A is not the product of cot and A. Therefore, given statement is false. 

(v) Since, the hypotenuse is the longest side whereas in sin A =\(\frac{4}{3}\) , 3 which is the denominator and cannot be hypotenous.

609.

If, sin50° = α then write the value of cos 50° in terms of α.

Answer»

We know that

cos2 θ + sin2 θ = 1

⇒ cos2 50° + sin2 50° = 1

⇒ cos 2 50° = 1 – sin2 50°

⇒ cos 50° = √(1 – sin2 50°)

And Given that sin 50° = a

⇒ cos 50° = √(1 – a2 )

610.

Find the value of \(\frac{1}{sin10°} - 4\, sin70°.\)

Answer»

sin(3 × 10°) = sin(30°) = \(\frac{1}{2}\)

⇒ 3 sin10° - 4 sin310° = \(\frac{1}{2}\)

⇒ 8 sin310° - 6 sin10° + 1 = 0

After solving this polynomial in sin10°, we get

⇒ sin10° = 0.17365

sin70° = sin(10° + 60°)

= sin10° cos60° + cos10° sin60°

= 0.17365 × \(\frac{1}{2}\) + 0.9848 × \(\frac{\sqrt3}{2}\)

= 0.086825 + 0.852868

= 0.93693

\(\frac{1}{sin 10°}\) - 4 sin70° = \(\frac{1}{0.17365} - 4(0.93693)\)

= 5.75871 - 3.74772

= 2.01099 (2.011 Approx)

611.

Write ‘True’ or ‘False’ and justify your answer.(tan θ + 2) (2 tan θ + 1) = 5 tan θ + sec2 θ.

Answer»

False

Justification:

L.H.S = (tan θ+2) (2 tan θ+1)

= 2 tan2 θ + tan θ + 4 tan θ + 2

= 2 tan2θ+5 tan θ+2

Since, sec2 θ – tan2 θ = 1, we get, tan2θ = sec2 θ-1

= 2(sec2 θ-1) +5 tan θ+2

= 2 sec2 θ-2+5 tan θ+2

= 5 tan θ+ 2 sec2 θ ≠R.H.S

∴, L.H.S ≠ R.H.S

612.

Find the value off the following:(sin72° + cos18°)( sin72° - cos18°)

Answer»

(sin 72° + cos 18°)( sin 72° - cos 18°)

Using the identity , (a - b)(a + b) = a2 – b2

= (sin 72°)2 - (cos 18°)2

= {cos(90° - 72°)}2 - (cos 18°)2 [∵ Sin θ = cos (90° - θ)]

= (cos 18°)2 - (cos 18°)2

= 0

613.

If cosA = x, express sin A in terms of x.

Answer»

We know that

cos2 θ + sin2 θ = 1

⇒ sin2 θ = 1 – cos2 θ

⇒ sin θ = √(1 – cos2 θ)

And Given that cos θ = x

⇒ sin θ = √(1– x2)

614.

Which of following values is not a possible value of sin x ?A) 3/4B) 3/5C) 4/5D) 5/4

Answer»

Correct option is: D)  \(\frac 54\)

\(\because\)  -1 \(\leq\) sin x \(\leq\) 1

Any value which is greater than 1 or less than -1 is not a possible value of sin x.

\(\because\) \(\frac 54\) > 1

\(\therefore\) \(\frac 54\) is not a possible value of sin x.

Correct option is: D) \(\frac{5}{4}\)

615.

If Sin A = 24/25 then Cot A = …………A) 25/24B) 7/24C) 24/7D) 25/7

Answer»

Correct option is: B) \(\frac{7}{24}\)

We have sin A = \(\frac{24}{25}\)

\(\therefore\) \(cos^2A = 1-sin^2A = 1-(\frac {24}{25})^2 = 1- \frac {576}{625} = \frac {625 -576}{625}\)

\(\frac {49}{625} = \frac {7^2}{25^2} = (\frac 7{25})^2\)

\(\therefore\) cos A = \(\frac 7 {25}\) 

\(\therefore\) cot A = \(\frac {cos\, A}{sin \, A} = \frac {\frac 7{25}}{\frac {24}{25}} = \frac 7{24}\)

Correct option is: B) \(\frac{7}{24}\)

616.

Prove that cosec2 72° − tan2 18° = 1

Answer»

cosec2 72° − tan2 18° = 1

LHS = cosec2 72° – tan2 18°

= cosec2 72° – tan2 (90 – 72)°

= cosec2 72° – cot2 72°

= 1 = RHS

617.

If cos40° = p, then write the value of sin 40° in terms of p.

Answer»

We know that

cos2 θ + sin2 θ = 1

⇒ cos2 40° + sin2 40° = 1

⇒ sin2 40° = 1 – cos2 40°

⇒ sin 40° = √(1 – cos2 40°)

And Given that cos 40° = p

⇒ sin 40° = √(1– p2)

618.

Which of the following is not defined ? A) Tan0° B) Tan 90° C) Cot 90° D) Sec 0°

Answer»

Correct option is: B) Tan 90°

\(\because\) (a) tan \(0^\circ\) = 0

(b) tan \(90^\circ\) = \(\theta\) (Not defined)

(c) cot \(90^\circ\) = 0

(d) sec \(0^\circ\) = 1

Correct option is: B) Tan 90°

619.

\(\frac{1-Tan^2\,45^\circ}{1+Tan^2\,45^\circ}\) can not be expressed as ………A) Sin 0°B) cos 90° C) Sin 0° Cos 90° D) Sin 60°

Answer»

Correct option is: D) Sin 60°

\(\frac{1-Tan^2 45^\circ}{1+Tan^2 45^\circ}\) = \(\frac {1-1^2}{1+1^2} = \frac {1-1}{1+1} = \frac 02 = 0\) (\(\because\) tan \(45^\circ\) = 1)

\(\because\) sin \(0^\circ\) = 0, cos \(90^\circ\)  = 0

and sin \(0^\circ\). cos \(90^\circ\)  = 0 \(\times\) 0 = 0

But sin \(60^\circ\) = \(\frac {\sqrt3}{2} \neq 0\)

\(\therefore\) \(\frac{1-Tan^2 45^\circ}{1+Tan^2 45^\circ}\) can not be expressed as sin \(60^\circ\).

Correct option is: D) Sin 60°

620.

Evaluate:(sin 72° + cos 18°) (sin 72° – cos 18°)

Answer»

We know that, 

sin (90 – θ) = cos θ 

So, the given can be expressed as 

(sin 72° + cos 18°) (sin (90 – 18)° – cos 18°) 

= (sin 72° + cos 18°) (cos 18° – cos 18°) 

= (sin 72° + cos 18°) x 0 

= 0

621.

Evaluate:cosec 31° – sec 59°

Answer»

We have, 

cosec 31° – sec 59° 

Since, cosec (90 – θ) = cos θ 

So, 

cosec 31° – sec 59° 

= cosec (90° – 59°) – sec 59° 

= sec 59° – sec 59° = 0 

Thus, 

cosec 31° – sec 59° = 0

622.

Prove:sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

Answer»

Taking the L.H.S, 

sinθ sin (90° – θ) – cos θ cos (90° – θ) 

= sin θ cos θ – cos θ sin θ [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ] 

= 0

623.

Prove that: (sin θ – cosec θ)2 + (cos θ – sec θ)2 = cot2 θ + tan2 θ – 1

Answer»

(sin θ – cosec θ)2 + (cos θ – sec θ)2 

= sin2 θ + cosec2 θ – 2 sinθ . cosecθ . + cos2 θ + sec2 θ – 2 cosθ . sec θ 

= (sin2 θ + cos2 θ) + cosec2 θ + sec2 θ – 2 – 2 

= 1 + (1 + cot2 θ) + (1 + tan2 θ) – 2 – 2

= cot2 θ + tan2 θ + 3 – 4 

= cot2 θ + tan2 θ – 1

624.

State the quadrant in which 6 lies if  sin θ < 0 and cos θ < 0

Answer»

sin θ < 0 

sin θ is negative in 3rd and 4th quadrants, cos θ < 0 

cos θ is negative in 2nd and 3rd quadrants. 

∴ θ lies in the 3rd quadrant.

625.

State the quadrant in which 6 lies if tan θ &lt; 0 and sec θ &gt; 0

Answer»

tan θ < 0 tan θ is negative in 2nd and 4th quadrants, sec θ > 0 

sec θ is positive in 1st and 4th quadrants. 

∴ θ lies in the 4th quadrant.

626.

If Sin A = 3/5 then Cos A =A) 3/4B) 4/5B) 5/4D) 4/3

Answer»

Correct option is: B) \(\frac{4}{5}\)

We have sin A = \(\frac 35\)

Now \(cos^2\, A = 1 -sin^2A = 1 -(\frac 35)^2 = 1 - \frac 9{25} \)

\(= \frac {25-9}{25} = \frac {16}{25} = (\frac 45)^2\)

\(\therefore\) cos A = \(\frac{4}{5}\)

Correct option is: B) \(\frac{4}{5}\)

627.

Prove that cos 81° − sin 9° = 0.

Answer»

LHS = cos81° – sin9°

= cos(90° - 9°)- sin9°

= sin9° – sin9°

= 0

= RHS

628.

Write using trigonometric tables, prove that:(i) cos 81° - sin 9° = 0(ii) tan 71° - cot 19° = 0(iii) cosec 80° - sec 10° = 0(iv) cosec272° - tan218° = 1(v) cos275° + cos215° = 1

Answer»

(i) LHS = cos 81° - sin 9°

= cos(90° - 9°) - sin 9°

= sin 9° - sin 9°

= 0 

= RHS

(ii) LHS = tan 71° - cot 19°

= tan(90° - 19°) - cot 19°

= cot 19° - cot 19°

= 0 

= RHS

(iii) LHS = cosec 80° - sec 10°

= cosec (90° - 10°) - sec 10°

= sec 10° - sec 10°

= 0 

= RHS

(iv) LHS = cosec2 72° - tan2 18°

= cosec2 (90° - 18°) - tan2 18°

= sec2 18° - tan2 18°

= 1

= RHS

(v) LHS = cos2 75° - cos2 15°

= cos2 (90° - 15°) + cos2 15°

= sin2 15° + cos2 15°

= 1

= RHS

629.

Without using trigonometric table, evaluate:(i) \(\frac{cos35°}{sin55°}\)(ii) \(\frac{cosec42°}{sec48°}\)(iii) \(\frac{cot38°}{tan52°}\)

Answer»

 (i) \(\frac{cos35°}{sin55°}\)

=  \(\frac{cos(90°-55°)}{sin55°}\)

\(\frac{sin55°}{sin55°}\) [∵ sin(90 - θ) = cos θ]

= 1

(ii) \(\frac{cosec42°}{sec48°}\)

\(\frac{cosec(90°-48°)}{sec48°}\)

\(\frac{sec48°}{sec48°}\) [∵ sec(90 - θ) = cosec θ]

= 1

(iii) \(\frac{cot38°}{tan52°}\)

\(\frac{cot(90°-52°)}{tan52°}\)

\(\frac{tan52°}{tan52°}\) [∵ tan(90 - θ) = cot θ]

= 1

630.

Without using trigonometric table, evalute:(i) \(\frac{sin16°}{cos74°}\)(ii) \(\frac{sec11°}{cosec79°}\)(iii) \(\frac{tan21°}{cot63°}\)

Answer»

(i) \(\frac{sin16°}{cos74°}\)

\(\frac{sin(90°-74°)}{cos74°}\)

\(\frac{cos74°}{cos74°}\) [∵ sin(90 - θ) = cos θ]

= 1

(ii) \(\frac{sec11°}{cosec79°}\)

\(\frac{sec(90°- 79°)}{cosec79°}\)

\(\frac{cosec79°}{cosec79°}\) [∵ sec(90 - θ) = cosec θ]

= 1

(iii) \(\frac{tan27°}{cot63°}\)

 = \(\frac{tan(90°- 63°)}{cot63°}\)

\(\frac{cos63°}{cos63°}\) [∵ tan(90 - θ) = cot θ]

= 1

631.

Without using trigonometric tables, prove that(i) \(\frac{2sin68^\circ}{cos22^\circ}-\frac{2cot15^\circ}{5tan75^\circ}- \frac{3tan45^\circ{tan20^\circ}tan40^\circ{tan50^\circ}tan70^\circ}5\) = 12sin68°/cos22°-2cot15°/5tan75°-3tan45°tan20°tan40°tan50°tan70°/5 = 1(ii) \(\frac{7cos55^\circ}{3sin35^\circ}-\frac{4(cos70^\circ{cosec20^\circ})}{3(tan5​​^\circ{tan25^\circ}tan45^\circ{tan65^\circ{tan85^\circ}})}\) = 17cos55°/3sin35° - 4(cos70°cosec20°)/3(tan5°tan45°tan65°tan85°)

Answer»

(i) LHS = \(\frac{2sin68^\circ}{cos22^\circ}-\frac{2cot15^\circ}{5tan75^\circ}- \frac{3{tan45^\circ}{tan20^\circ}{tan40^\circ}{tan50^\circ}{tan70^\circ}}5\)

\(\frac{2sin68^\circ}{sin(90^\circ-22^\circ)}-\frac{2cot15^\circ}{5tan75^\circ}- \frac{3\times1\times{cot(90^\circ-20^\circ)}\times{cot(90^\circ-40^\circ)}\times{tan50^\circ}\times{tan70^\circ}}5\)

\(\frac{2sin68^\circ}{sin68^\circ}-\frac{2cot15^\circ}{5cot15^\circ}- \frac{3\times{cot70^\circ}{tan50^\circ}tan70^\circ}5\)

= 2 - \(\frac{2}5\)\(\frac{3\times{\frac{1}{tan70^\circ}}\times{\frac{1}{tan50^\circ}}\times{tan50^\circ}\times{tan70^\circ}}5\)

= 2 - \(\frac{2}5\)\(\frac{3}5\)

\(\frac{10-2-3}5\)

\(\frac{5}5\)

= 1

= RHS

(ii) LHS =  \(\frac{7cos55^\circ}{3sin35^\circ}-\frac{4(cos70^\circ{cosec20^\circ})}{3(tan5​​°tan25^\circ{tan45^\circ}tan65^\circ{tan85^\circ})}\)

\(\frac{7cos55^\circ}{3cos(90^\circ-35^\circ)}-\frac{4(sin(90^\circ-70^\circ)cosec 20^\circ}{{3cot(90^\circ- 5^\circ)}\times{cot(90^\circ-25^\circ)}\times1\times{tan65^\circ}\times{tan85^\circ}}\)

\(\frac{7cos55^\circ}{3cos55^\circ}\) - \(\frac{{4(sin20^\circ}{cosec20^\circ})}{{3({cot85^\circ}{cot65^\circ}{tan65^\circ}{tan85^\circ}}}\)

\(\frac{7}3\) - \(\frac{{4(sin20^\circ}\times{\frac{1}{tan20^\circ}})}{{3({\frac{1}{tan85^\circ}}\times{\frac{1}{tan65^\circ}}{tan65^\circ}{tan85^\circ)}}}\) 

\(\frac{7}3\) - \(\frac{4}3\)

\(\frac{3}3\)

= 1

= RHS

632.

Evaluate tan65°/cot25°

Answer»

We know: cot A = tan (90° – A)

So, cot 25° = tan (90° – 25°) = tan 65°

i.e., tan 65°/cot 25° = tan 65°/ tan 65°=1

633.

tan 5° × tan 30° × 4 tan 85° is equal to A. 4/√3 B. 4√3C. 1 D. 4

Answer»

⇒ tan 5° x tan 30° x 4 tan 85° 

As, 

tan (90 – θ) = cot θ 

Therefore, 

⇒ tan (90 – 85) x tan 30° x 4 tan 85° 

⇒ cot 85° × tan 85° × 4 × tan 30° 

⇒ 1/tan 85 × tan 85° × 4 × tan 30° 

As we know, 

tan 30° = 1/√3 

⇒ 4 × tan 30° 

⇒ 4 × (1/√3) = 4/√3

tan 5° × tan 30° × 4 tan 85°

 = 4tan 5°× tan 85° × tan 30°

= 4tan 5°× cot5° × tan 30°

= 4×1×tan 30°

= 4tan 30°

= 4/√3 (A)
634.

Prove that cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0.

Answer»

L.H.S.

= cosec (65° + θ) - sec (25° - θ) - tan (55° - θ) + cot (35° + θ)

= cosec (65° + θ) - sec (90° – (65° + θ)) - tan (90° – (35° + θ)) + cot (35° + θ)

= cosec (65° + θ) - cosec (65° + θ)) - cot (35° + θ) + cot (35° + θ)

= 0

= R.H.S.

635.

tan 5° tan 25° tan 30° tan 65° tan 85° = ?(a) √3(b) 1√3(c) 1(d) none of these

Answer»

Correct answer = (b) 1/√3

We have

tan 5° tan 25° tan 30° tan 65° tan 85°

= tan 5° tan 25° tan 30° tan(90° − 25°) tan(90° − 5°) 

= tan 5° tan 25° × 1/√3 × cot 25° cot 5° [∵ tan(90° − θ) = cot θ and tan 30° = 1/√3 ] 

= 1/√3

636.

Evaluate:tan 35° tan 40° tan 50° tan 55°

Answer»

tan 35° = tan (90° - 55°) = cot 55°
tan 40° = tan (90° - 50°) = cot 50°

Cot 55 tan 55∙ cot 50 tan 50
=1 ∙ 1  

= 1

637.

Evaluate:\(\frac{tan\, 35°}{cot\, 55°} + \frac{cot\, 78°}{tan\, 12°} - 1\)

Answer»

We have, 

[∵ cot (90 – θ) = tan θ and tan (90 – θ) = cot θ]

\(\frac{tan\, 35°}{cot\, 55°} + \frac{cot\, 78°}{tan\, 12°} - 1\)

\(\frac{tan\, (90°-\, 35°)}{cot\, 55°} + \frac{cot\,(90° -\, 12°)}{tan\, 12°} - 1\)

\(\frac{cot\, 55°}{cot\, 55°} + \frac{tan\, 12°}{tan\, 12°} - 1\)

= 1 + 1 – 1 

= 1

638.

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

Answer»

Given: sin θ +2 cos θ = 1

Squaring on both sides,

(sin θ +2 cos θ)2 = 1

⇒ sin2 θ + 4 cos2 θ + 4sin θcos θ = 1

Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ

⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θcos θ = 1

⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θcos θ = 1

⇒ – 4 sin2 θ – cos2 θ + 4sin θcos θ = – 4

⇒ 4 sin2 θ + cos2 θ – 4sin θcos θ = 4

We know that,

a2+ b2 – 2ab = ( a – b)2

So, we get,

(2sin θ – cos θ)2 = 4

⇒ 2sin θ – cos θ = 2

Hence proved.

639.

Show that tan 48° tan 16° tan 42° tan 74° = 1

Answer»

L.H.S. = tan 48° tan 16° tan 42° tan 74° 

= tan 48°. tan 16° . tan(90° – 48°) . tan(90° – 16°) 

= tan 48° . tan 16° . cot 48° . cot 16° [∵ tan (90 – θ) = cot θ] 

= tan 48° . tan 16° . \(\frac{1}{tan \,48^∘}\)\(\frac{1}{tan \,16^∘}\) [∵ cot θ = \(\frac{1}{tan \,θ}\)]

= 1 = R.H.S. 

∴ L.H.S. = R.H.S.

640.

If cosec θ = 2 and cot θ = √3p where ‘θ’ is an acute angle, then p =A) 2B) 1C) 1/2D) √3

Answer»

Correct option is: B) 1

Given that cosec \(\theta\) = 2

and cot \(\theta\) = \(\sqrt {3P}\)

\(cot^2 \theta\) = 3P

\(cosec^2 \theta -1 \) = 3P ( \(\because\) \(cot^2 \theta\) = \(cosec^2 \theta -1 \))

= 4-1 = 3P (\(\because\) cosec \(\theta\) = 2)

= 3P = 3

= P = \(\frac 33\) = 1

Correct option is: B) 1

641.

Write the value of sec2θ (1 + sinθ)(1 - sinθ)

Answer»

sec2θ (1 + sinθ)(1 - sinθ)

= sec2 θ(1 − sin2 θ) 

= 1/cos2 θ × cos2 θ 

= 1

642.

Write the value of sin2θ cos2θ(1 + tan2θ)(1 + cot2θ)

Answer»

sin2θ cos2θ(1 + tan2θ)(1 + cot2θ)

= sin2 θ cos2 θ sec2 θ cosecθ 

= sin2 θ × cos2 θ × 1/cos2 θ × 1/sin2 θ 

= 1

643.

Write the value of cosec2θ(1 + cosθ)(1 - cosθ).

Answer»

cosec2θ(1 + cosθ)(1 - cosθ)

= cosec2θ(1 − cos2 θ) 

= 1/sin2 θ × sin2 θ 

= 1

644.

If θ and ϕ are acute angles such that sin θ = 1/2  and cos ϕ = 1/3 , than θ + ϕ lies in(a) \(\bigg]\frac{π}{3},\fracπ2\bigg[\)(b) \(\bigg]\frac{2π}{3},\frac{5π}3\bigg[\)(c) \(\bigg]\frac{π}{2},\frac{2π}3\bigg[\)(d) \(\bigg]\frac{5π}{6},π\bigg[\)

Answer»

(c) \(\bigg]\frac{π}{2},\frac{2π}3\bigg[\)

sin θ = \(\frac12\) ⇒ sin θ = sin \(\fracπ6\) ⇒ θ = \(\fracπ6\)            

( θ and φ are acute angles lying in the first quadrant)            …(i) 

Now cos ϕ = \(\frac13\) ⇒ 0 < cos ϕ < \(\frac12\) ⇒ cos \(\fracπ2\) < cos ϕ < cos \(\fracπ3\) ⇒ \(\fracπ2\) < ϕ < \(\fracπ3\)         …(ii) 

∴ From (i) and (ii) \(\fracπ2\) + \(\fracπ6\) < θ + ϕ < \(\fracπ3\) + \(\fracπ6\)

\(\fracπ2\) < θ + ϕ < \(\frac{2π}3\) ⇒ θ + ϕ lies in the open interval \(\bigg]\frac{π}{2},\frac{2π}3\bigg[\)

Hence (c) is the correct option.

645.

The angle A lies in the third quadrant and it satisfies the equation 4 (sin2x + cos x) = 1. What is the measure of angle A?

Answer»

4 sin2x + 4 cos \(x\) = 1 

⇒ 4 sin2x + 4 cos \(x\) – 1 = 0 ⇒ 4 (1 – cos2x) + 4 cos \(x\) – 1 = 0 

⇒ – 4 cos2x + 4 cos x + 3 = 0 ⇒ 4 cos2x – 4 cos \(x\) – 3 = 0 

⇒ 4 cos2x – 6 cos \(x\) + 2 cos \(x\) – 3 = 0 ⇒ 2 cos \(x\) (2 cos \(x\) – 3) + 1 (2 cos \(x\) – 3) = 0 

⇒ (2 cos \(x\) + 1) (2 cos \(x\) – 3) = 0 

⇒ cos \(x\) = \(-\frac12\) and cos \(x\) = \(\frac32\) (not possible) 

Now cos \(x\) = \(-\frac12\) 

Since A lies in the third quadrant and cos A = \(-\frac12\), therefore, 

cos A = cos (180º + 60º) = cos 240º ⇒ A = 240º.

646.

If sec θ = \(\frac{13}{5}\), then what is the value of \(\frac{\text{2 sin θ - 3 cos θ}}{\text{4 sin θ - 9 cos θ}}\)?(a) 1 (b) 3 (c) 2 (d) 4

Answer»

(b) 3

Given, sec θ = \(\frac{13}{5}\) ⇒ sec2 θ = \(\frac{169}{25}\)

⇒ 1 + tan2θ = \(\frac{169}{25}\)                 ( sec2θ – tan2θ = 1) 

⇒ tanθ = \(\frac{169}{25}\) - 1 = \(\frac{144}{25}\) ⇒ tan θ = \(\frac{12}{5}\)

∴ \(\frac{2\,sin\,\theta-3\,cos\,\theta}{4\,\sin\,\theta-9\,cos\,\theta}\) = \(\frac{\frac{2\,sin\,\theta}{cos\,\theta}-3}{\frac{4\,sin\,\theta}{cos\,\theta}-9}\)

(On dividing each term of numerator and denominator by cos θ)

\(= \frac{2\,tan\,\theta-3}{4\,tan\,\theta-9}=\frac{2\times\frac{12}{5}-3}{4\times\frac{12}{5}-9}\)

\(\frac{24-15}{48-45}=\frac93=3.\)

647.

Write the value of `sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).`A. -1B. 2C. 0D. 1

Answer» Correct Answer - D
`cos(90-theta)=sintheta and sin(90-theta)=costheta`.
648.

What is the value of √3 cosec 20° – sec 20° ?

Answer»

√3 cosec 20° – sec 20°

\(\frac{\sqrt3}{sin\,20°}\) - \(\frac{1}{cos\,20°}\) = \(\frac{​​\sqrt3\,cos\,20°-sin\,20°}{sin20°\,cos20°}\)

\(\frac{​​4}{2\,sin20°\,cos20°}\bigg(\frac{\sqrt3}{2}cos\,20°-\frac12sin\,20°\bigg)\) (Multiplying numerator and denominator by 4)

\(\frac{4}{sin\,40°}\) (sin 60° cos 20° – cos 60° sin 20°)    ( sin 2θ = 2 sin θ cos θ)

\(\frac{4}{sin\,40°}\) (sin (60° – 20°))         ( sin (A – B) = sin A cos B – cos A sin B)

\(\frac{4}{sin\,40°}\). sin 40° = 4.

649.

If sin 56° = x, then express sin 34° in terms of x.

Answer»

Given sin 56° = x

We know that sin θ = cos (90° - θ)

Here, θ = 56°

⇒ cos (90° - 56°) = x

⇒ cos 34° = x

650.

If sin 37° = a, then express cos 53° in terms of a.

Answer»

Given sin 37° = a

We know that sin θ = cos (90° - θ)

Here, θ = 37°

⇒ cos (90° - 37°) = a

⇒ cos 53° = a