InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 551. |
The value of `144^(@)` in circular measure =________ |
| Answer» Correct Answer - `(4pi)/(5)` | |
| 552. |
1 + tan2θ = ?(A) cot2θ (B) cosec2θ (C) sec2θ (D) tan2θ |
|
Answer» Correct answer is (C) sec2θ |
|
| 553. |
cosec 45° = ?(A) 1/√2(B) √2(C) √3/2(D) 1/√3 |
|
Answer» Correct answer is (B) √2 |
|
| 554. |
sin θ.cosec θ = ?(A) 1(B) 0(C) 1/2(D) √2 |
|
Answer» Correct answer is (A) 1 |
|
| 555. |
Sin2 60° + Cos2 30° + Tan2 60° =A) 9/2B) 2/9C) 1/9D) 1 |
|
Answer» Correct option is: A) \(\frac{9}{2}\) \(sin^2 \, 60^\circ + cos^2 \, 30^\circ + tan^2\, 60^\circ\) = \((\frac {\sqrt3}2)^2 + (\frac {\sqrt3}2)^2 + ({\sqrt3})^2\) (\(\because\) sin \(60^\circ\) = \(\frac {\sqrt3}2\), cos \(30^\circ\) = \(\frac {\sqrt3}2\) and tan \(60^\circ\) = \(\sqrt3\)) = \(\frac 34 + \frac 34 + 3\) = \(\frac 64 + \frac {12}4 = \frac {18}4 = \frac 92\) Hence, \(sin^2\, 60^\circ + cos^2\, 30^\circ + tan^2\, 60^\circ = \frac 92\) Correct option is: A) \(\frac{9}{2}\) |
|
| 556. |
8 Tan A = 15 then Sin A – Cos A =A) 7/3B) 7/17C) 9/14D) 3/7 |
|
Answer» Correct option is: B) \(\frac{7}{17}\) Given that 8 tan A = 15 = tan A = \(\frac {15}8\) \(\because\) \(sec^2 A = 1 + tan^2 A\) = \(1 + (\frac {15}{8})^2\) = 1 + \(\frac {225}{64}\) = \(\frac {64 + 225}{64} = \frac {289}{64}\) = \((\frac {17}{8})^2\) \(\therefore\) sec A = \(\frac {17}8\) \(\therefore\) cos A = \(\frac 1 {sec \, A} = \frac 1{\frac {17}8} = \frac 8{17}\) \(\because\) tan A = \(\frac {sin\, A}{cos \, A}\) = sin A = cos A. tan A = \(\frac 8 {17} \times \frac {15}8 = \frac {15}{17}\) Now, sin A - cos A = \( \frac {15}{17} - \frac 8 {17} = \frac {15-8}{17} = \frac 7{17}\) Correct option is: B) \(\frac{7}{17}\) |
|
| 557. |
Evaluate (sin x – cos x)2 + (sin x + cos x)2. |
|
Answer» (sin x – cos x)2 + (sin x + cos x)2 = sin2 x + cos2 x – 2 sin x cos x + sin2 x + cos2 x + 2 sin x cos x = 2(sin2 x + cos2 x) = 2(1) = 2 |
|
| 558. |
\(\sqrt{1+sin^2\,\theta+cos^2\,\theta}\) = ………A) 1 B) 2 C) √21D) √2 |
|
Answer» Correct option is: D) √2 \(\sqrt{1 + sin^2\, \theta + cos^2\, \theta} = \sqrt {1+1} = \sqrt2\) (\(\because\) \(sin^2\theta + cos^2\theta = 1\)) Correct option is: D) √2 |
|
| 559. |
tan 2A = 1 then A = ………A) 45.5 B) 60.5 C) 22.5 D) 30.5 |
|
Answer» Correct option is: C) 22.5 We have tan 2 A = 1 = tan \(45^\circ\) = 2A = \(45^\circ\) = A = \(\frac {45^\circ}{2} = (22.5)^\circ\) Correct option is: C) 22.5 |
|
| 560. |
If x = a secθ cosΦ, y = b secθ sinΦ, z = c tan θ, then x2/a2 + y2/b2 = ………A) z2/c2B) 1 – z2/c2C) z2/c2 – 1D) 1 + z2/c2 |
|
Answer» Correct option is: D) \(1 + \frac{z^2}{c^2}\) We have x = a sec \(\theta\) cos \(\phi\) = \(\frac xa\) sec \(\theta\) cos \(\phi\). y = b sec \(\theta\) sin \(\phi\) = \(\frac yb\) = sec \(\theta\) sin \(\phi\). z = c tan \(\theta\) Now, \(\frac {x^2}{a^2} + \frac {y^2}{b^2} = (\frac xa)^2 + (\frac yb)^2\) = \((sec\, \theta \, cosc \, \phi)^2 + (sec\, \theta \, sin\, \phi)^2\) = \(sec^2\theta \, cos^2\phi + sec^2\theta \, sin^2\phi\) = \(sec^2\theta (cos^2\, \phi + sin^2\phi)\) = \(sec^2\theta \) (\(\because\) \(cos^2 \phi + sin^2\phi = 1\)) = 1 + \(tan^2\theta\) (\(\because\) \(sec^2\theta = 1+ tan^2\theta\)) = 1+ \((\frac zc)^2\) (\(\because\) z = c \(\tan \theta = tan \theta = \frac zc\)) = 1 + \(\frac {z^2}{c^2}\) Correct option is: D) 1 + \(\frac{z^2}{c^2}\) |
|
| 561. |
Find the value `tan(22(1)/(2))`.A. `sqrt2-1`B. `1+sqrt2`C. `2+sqrt3`D. `2-sqrt3` |
|
Answer» Correct Answer - A We have, `tan2theta=(2tantheta)/(1-tan^(@)theta)` Let `theta=(22(1)/(2))rArr2theta=45^(@)` `thereforetan45^(@)=(2tantheta)/(1-tan^(2)theta)`. `1=(2tantheta)/(1-tan^(2)theta)` `rArr1-tan^(2)theta=2tantheta` `rArrtan^(2)theta+2tantheta-1=0` `tantheta=(-2pmsqrt(2^(2)-4(1)(-1)))/(2(1))` `=(-2pmsqrt8)/(2)=-1pmsqrt2`. As `theta " is " (22(1)/(2)), tan(22(1)/(2))^(@)=sqrt2-1`. |
|
| 562. |
Express each of the following as the product of two trigonometric reactions. (i) sin 12x + sin 4x (ii) sin 7A – sin 3A (iii) cos 2θ + cos 6θ (iv) sin 80° – sin 40° |
|
Answer» (i) sin12x + sin4x = 2.sin \(\frac{12x + 4x}{2}.cos\frac{12x - 4x}{2}\). cos (ii) sin7A – sin3A = 2cos5A.sin2A (iii) cos6θ + cos2θ = 2 cos4θ.cos2θ (iv) sin 80° – sin 40° = 2 cos60°. sin 20° = 2. sin 20° = sin 20° |
|
| 563. |
`sec^(4) theta-sec^(2)theta`=_________A. `tan^(2)theta sec^(2)theta `B. `(tan^(2) theta)/(sec^(2) theta)`C. `"cosec"^(2)theta cot^(2)theta `D. `(cot^(2)theta)/("cosec"^(2)theta )` |
|
Answer» Correct Answer - A `sec^(4)theta-sec^(2)theta=sec^(2)theta(sec^(2)theta-1)=sec^(2)theta tan^(2) theta. ` |
|
| 564. |
`sin theta + cos theta =sqrt(2), ` then `sin^(16)theta `=______A. `(cos^(16)theta )/(2^(16))`B. `(sec^(16)theta)/(2^(8))`C. `(1)/(2 sec^(16) theta )`D. `(1)/(2^(16) cos^(16) theta )` |
|
Answer» Correct Answer - D ` sin theta+ cos theta=sqrt(2)` `sin^(2)theta+ cos^(2) theta +2 sin theta cos theta =2` `implies 2 sin theta cos theta =1` ` sin theta cos theta=(1)/(2)` `sin^(16)=(1)/(2^(16)cos^(16)theta)`. |
|
| 565. |
If `(sin(x-y))/(sin(x+y))=(3)/(5)`, then `tanx* coty` is _____A. 1B. 2C. 3D. 4 |
|
Answer» Correct Answer - D (i) Apply componendo and dividendo rule, i.e., `(a)/(b)=(a+b)/(a-b)` (ii) Use the formula ` sin (x-y) and sin (x+y)` (iii) And then apply cross multiplication. |
|
| 566. |
`sqrt(sqrt( 16 sin^4 theta + cosec^4 theta + 8) -4) =`A. `2 sin theta-"cosec" theta `B. `2 sin theta + "cosec " theta `C. `2 " cosec " theta + cos theta `D. `2 " cosec" theta+ sin theta ` |
|
Answer» Correct Answer - C Use `a^(2)+b^(2)+2ab=(a+b)^(2) and sin theta. " cosec " theta =1`. |
|
| 567. |
If `sin alpha -cos alpha = m`, then the value of `sin^6alpha+cos^6alpha` in terms of m isA. `1-(3)/(4) (1+m^(2))^(2)`B. `1-(4)/(3)(m^(2)-1)^(2)`C. `1-(3)/(4)(1-m^(2))^(2)`D. `1-(3)/(4)(1+m^(2))^(2)`. |
|
Answer» Correct Answer - C (i) Use the identity `a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)`. (ii) Find the value of ` sin alpha cos alpha ` by squaring ` sin alpha- cos alpha` = m . |
|
| 568. |
If `sin theta` and `cos theta` are the roots of the quadratic equation `px^2 + qx + r = 0 (p != 0),` then which of the following relation holds good?A. `q^(2)-p^(2)=2pr`B. `p^(2)-q^(2)=2pr`C. `p^(2)+q^(2)+2pr=0`D. `(p-q)^(2)=2pr` |
|
Answer» Correct Answer - A (i) For the equation `ax^(2)+bx+c=0`,the sum of roots is `(-b)/(a)`, and product of the roots is `( c)/(a)`. (ii) Sum of the roots, `sin theta+ cos theta =(-q)/(p)`. (iii) Product of the roots ` sin theta * cos theta =(r )/(p)`. (iv) Eliminate `theta`, by using the formula `(a+b)^(2)=a^(2)+b^(2)+2ab` from the above equations. |
|
| 569. |
Prove the following:\(\frac{sin\,x-sin\,3x+sin\,5x-sin\,7x}{cos\,x-cos\,3x-cos\,5x+cos\,7x}=cot\,2x\)sin x- sin 3x+sin 5x-sin 7x/ co x-cos 3x-cos 5x+cos 7x = cot 2x |
|
Answer» L.H.S = \(\frac{sin\,x-sin\,3x+sin\,5x-sin\,7x}{cos\,x-cos\,3x-cos\,5x+cos\,7x}\) = \(\frac{(5sin\,x + sin\,x)-(sin\,7x+sin\,3x)}{(cos\,x-cos5x)-(cos\,3x-cos\,7x)}\) = \(\frac{2sin(\frac{5x+x}{2}).cos(\frac{5x-x}{2})-2sin(\frac{7x+3x}{2}).cos(\frac{7x-3x}{2})}{2sin(\frac{x+5x)}{2}).sin(\frac{5x-x}{2})-2sin(\frac{3x+7x}{2}).sin(\frac{7x-3x}{2})}\) =\(\frac{2\,sin\,3x\,.cos\,2x-2\,sin\,5x.cos\,2x}{2\,sin\,3x.sin\,2x-2sin\,5x.sin\,2x}\) = \(\frac{2\,cos\,2x(sin\,3x-sin\,5x)}{2\,sin\,2x(sin\,3x-sin\,\,5x)}\) = \(\frac{cos\,2x}{sin\,2x}=cot\, 2x = R.H.S.\) |
|
| 570. |
If x = a cos3 θ and y = b sin3 θ, then the value of \(\bigg(\frac{x}{a}\bigg)^\frac23 +\bigg(\frac{y}{b}\bigg)^\frac23\) is(a) 1 (b) –2 (c) 2 (d) –1 |
|
Answer» (a) 1 \(\bigg(\frac{x}{a}\bigg)^\frac23 +\bigg(\frac{y}{b}\bigg)^\frac23\) = \(\bigg(\sqrt[3]{\frac{a\,cos^3\,\theta}{a}}\bigg)^2 + \bigg(\sqrt[3]\frac{b\,sin^3\,\theta}{b}\bigg)^2\) = (sin θ)2 + (cos θ)2 = sin2 θ + cos2 θ = 1 |
|
| 571. |
If x = a sec θ + b tan θ y = b sec θ + a tan θ then x2 – y2 is equal to(a) 4ab sec θ tan θ (b) a2 – b2 (c) b2 – a2 (d) a2 + b2 |
|
Answer» (b) a2 – b2 x2 – y2 = (a sec θ + b tan θ)2 – (b sec θ + a tan θ)2 = a2 sec2 θ + 2ab sec θ tan θ + b2 tan2 θ - (b2 sec2 θ + 2ab sec θ tan θ + a2 tan2 θ) = (a2 - b2) sec2 θ + (b2 - a2) tan2 θ = (a2 - b2)(sec2 θ - tan2 θ) [(∴ a2 - b2 = - (b2 - a2))(∵ sec2 θ - tan2 θ = 1)] = a2 – b2 |
|
| 572. |
The value of sin2 θ cos2 θ ( sec2 θ + cosec2 θ) is(a) 2 (b) 4 (c) 1 (d) 3 |
|
Answer» (c) 1 sin2 θ cos2 θ (sec2 θ + cosec2 θ) = sin2 θ cos2 θ \(\bigg(\frac{1}{cos^2\,\theta}+\frac{1}{sin^2\,\theta}\bigg)\) = sin2 θ cos2 θ \(\bigg(\frac{sin^2\,\theta\,+\,cos^2\,\theta}{cos^2\,\theta\,sin^2\,\theta}\bigg)\) = sin2 θ + cos2 θ = 1 |
|
| 573. |
If 7 sin A = 24 cos A, then 14 tan A + 25 cos A – 7 sec A equals.(a) 0 (b) 1 (c) 30 (d) 32 |
|
Answer» (c) 7 sin A = 24 cos A ⇒ \(\frac{sin\,A}{cos\,A}=\frac{24}{7}\) ⇒ tan A = \(\frac{24}{7}\) Now make the figure and find all the other t-ratios and solve. |
|
| 574. |
Prove the following: cos (3π/2 +x) cos (2π+x) [cot(3π/2-x)+ cot (2π+x)] |
|
Answer» L.H.S. = cos (3π/2 +x) cos (2π+x) .[cot(3π/2-x)+ cot (2π+x)] = (sin x)(cos x) (tan x + cot x) = sin x cos x (\((\frac{sin\, x}{cos\, x} + \frac{cos\, x}{sin\,x})\)) = sin x cos x \((\frac{sin^2\, x+cos^2\, x}{sin\,x\,cos\,x})\) = sin x cos x (\(\frac{1}{sin\, x\, cos\, x}\)) = 1 = R.H.S |
|
| 575. |
Cos (A – B) = 1/2; Sin B = 1/√2, then the value of A.A) 15° B) 105° C) 90° D) 60° |
|
Answer» Correct option is: B) 105° We have cos (A-B) = \(\frac 12\) = cos \(60^\circ\) = A - B = \(60^\circ\)....(1) And sin B = \(\frac 1{\sqrt2}\) = sin \(45^\circ\) = B = \(45^\circ\) \(\therefore\) A- \(45^\circ\) = \(60^\circ\) (From (1)) = A = \(60^\circ\) + \(45^\circ\) = \(105^\circ\) Correct option is: B) 105° |
|
| 576. |
If A, B and C are the angles of a ∆ABC, prove that tan (C + A)/2 = cot B/2. |
|
Answer» Given function is : tan (C + A)/2 = cot B/2 Sum of all the angles of a triangle = 180 degree So, A + B + C = 180° Or A + C = 180° – B And, (A + C)/2 = (180° – B)/2 = 90° – B/2 Now, tan (A + C)/2 = tan(90° – B/2) = cot B/2 Hence Proved. |
|
| 577. |
Express the terms of trigonometric ratios of angles lying between 0° and 45°.cosec 54° + sin 72° |
|
Answer» cosec 54° + sin 72° = cosec (90 – 36)° + sin (90 – 18)° = sec 36° + cos 18° |
|
| 578. |
Express the terms of trigonometric ratios of angles lying between 0° and 45°.sec 76° + cosec 52° |
|
Answer» sec 76° + cosec 52° = sec (90 – 14)° + cosec (90 – 38)° = cosec 14° + sec 38° |
|
| 579. |
Express the trigonometric ratio of sec A and tan A in terms of sin A. |
|
Answer» sec A = (1/cos A) = (1/√(1 - sin2 A)) and tan A = (sin A/cos A) = (sin A/√(1-sin2 A)) |
|
| 580. |
cos 12° – sin 78° = ………A) 1 B) 1/2 C) 0 D) -1 |
|
Answer» Correct option is: C) 0 cos \(12^\circ\) - sin \(78^\circ\) = cos \(12^\circ\) - sin (\(90^\circ\)- \(12^\circ\)) = cos \(12^\circ\) cos \(12^\circ\) (\(\because\) sin (\(\because\) \(90^\circ\) - \(\theta\)) = cos \(\theta\) =0 Correct option is: C) 0 |
|
| 581. |
If sin(A + B) = 1/√2 and cos (A – B) = 1/√2 then ∠B =A) 60° B) 45° C) 30° D) 0° |
|
Answer» Correct option is: D) 0° We have sin (A + B) = \(\frac 1{\sqrt2} = sin \, 45^\circ\) = A + B = \(45^\circ\) .....(1) and cos (A-B) = \(\frac 1{\sqrt2} = cos\, 45^\circ\) = A - B = \(45^\circ\) .....(2) Subtract equation (1) from (2), we get (A + B) - (A-B) = \(45^\circ\) - \(45^\circ\) = 2B = \(0^\circ\) = B = \(0^\circ\) Hence, < B = \(0^\circ\) Correct option is: D) 0° |
|
| 582. |
sec2 60°- 1 = ? (a) 2 (b) 3 (c) 4 (d) 0 |
|
Answer» Correct answer is (b) 3 Sec2 60° − 1 = (2)2 − 1 = 4 − 1 = 3 |
|
| 583. |
Evaluate: cos 12° – sin 78° |
|
Answer» Given that cos 12° – sin 78° = cos 12° – sin(90° – 12°) [∵ sin (90 – θ) = cos θ] = cos 12° – cos 12° = 0 |
|
| 584. |
If tan A = 5/12,find the value of (sin A + cos A) sec A . |
|
Answer» (sin A + cos A) sec A = (sin A + cos A) 1/cos A = sin A/cos A + cos A/cos A = tan A + 1 = 5/12 + 1/1 = 5+12/12 = 17/12 |
|
| 585. |
Find the values of: cos 1140° |
|
Answer» We know that cosine function is periodic with period 2π. cos 1140° = cos (3 × 360° + 60°) = cos 60° = 1/2 |
|
| 586. |
Evaluate each of the following:sin2 30° cos2 45° + 4 tan2 30° + \(\frac{1}2\) sin2 90° - 2 cos2 90° + \(\frac{1}{24}\) cos2 0° |
|
Answer» sin2 30° cos2 45° + 4 tan2 30° + \(\frac{1}2\) sin2 90° - 2 cos2 90° + \(\frac{1}{24}\) cos2 0° = \((\frac{1}2)^2\) x \((\frac{1}{\sqrt2})^2\) + 4 x \((\frac{1}{\sqrt3})^2\) + \(\frac{1}2\) x (1)2 - 2 x (0)2 + \(\frac{1}{24}\) x (1)2 = \(\frac{1}4\)x \(\frac{1}2\) + \(\frac{4}3\) + \(\frac{1}2\) - 0 = \(\frac{1}{24}\) = \(\frac{1}8\) + \(\frac{4}3\) + \(\frac{1}2\) + \(\frac{1}{24}\) = 2 |
|
| 587. |
If tan(A + B) = √3 and tan(A – B) = 1/√3 ; 0° < A + B ≤ 90°; A > B, find A and B. |
|
Answer» Solution: tan (A + B) = √3 ⇒ tan (A + B) = tan 60° ⇒ (A + B) = 60° ... (i) tan (A – B) = 1/√3 ⇒ tan (A - B) = tan 30° Adding (i) and (ii), we get A + B + A - B = 60° + 30° 2A = 90° A= 45° Putting the value of A in equation (i) 45° + B = 60° ⇒ B = 60° - 45° ⇒ B = 15° Thus, A = 45° and B = 15° |
|
| 588. |
If tan (A + B) = √3 and tan (A – B) = \(\frac{1}{\sqrt 3}\) 0° < A + B ≤ 90°; A > B. find A and B. |
|
Answer» tan (A + B) = √3 ⇒ A + B = 60° ………….. (i) tan (A – B) = \(\frac{1}{\sqrt3}\) ⇒ A – B = 30° ………… (ii) From Eqn. (i) + Eqn.(ii), we have 2A = 90 ⇒ = 45° From eqn. (i), A + B = 60° 45° + B = 60° ∴ B = 15 |
|
| 589. |
Tan (B + 15°) = 1/√3 then B =A) 60° B) 80° C) 70° D) 15° |
|
Answer» Correct option is: D) 15° We have tan (B + \(15^\circ\) ) = \(\frac 1{\sqrt3} \) = tan \(30^\circ\) = B + \(15^\circ\) = \(30^\circ\) = B = \(30^\circ\) - \(15^\circ\) = \(15^\circ\) Correct option is: D) 15° |
|
| 590. |
Sin (A – B) = 1/2; Cos (A + B) = 1/2 then ∠A isA) 60° B) 15°C) 30°D) 45° |
|
Answer» Correct option is: D) 45° We have sin (A-B) = \(\frac 12 = sin \, 30^\circ\) = A - B = \(30^\circ\) ...(1) and cos (A+B) \(\frac 12\) = cos \(60^\circ\) = A + B = \(60^\circ\).....(2) By adding equations (1) & (2), we get (A-B) + (A+B) = \(30^\circ\) + \(60^\circ\) = \(90^\circ\) = 2A = \(90^\circ\) = A = \(\frac {90^\circ}2 = 45^\circ\) Hence, \(\angle\)A = \(45^\circ\) Correct option is: D) 45° |
|
| 591. |
The value of cos 45° . cos 30° . cos 90° . cos 60° =A) √3/4√2B) √3/4C) 0D) √3/2√2 |
|
Answer» Correct option is: C) 0 cos \(45^\circ\). cos \(30^\circ\). cos \(90^\circ\). cos \(60^\circ\) = \(\frac {1}{\sqrt2}. \frac {\sqrt3}2. 0. \frac 12 = 0\) Correct option is: C) 0 |
|
| 592. |
If A and B are two complementery angle, then `sin A*cosB+cosA*sinB`=____________. |
| Answer» Correct Answer - 1 | |
| 593. |
Evaluate each of the following:\(\frac{4}{cot^230°}\) + \(\frac{1}{cot^260°}\) - cos2 45° |
|
Answer» \(\frac{4}{cot^230°}\) + \(\frac{1}{cot^260°}\) - cos2 45° = \(\frac{4}{(\sqrt3)^2}\) + \(\frac{1}{(\frac{\sqrt3}{2})^2}\) - \((\frac{1}{\sqrt2})^2\) = \(\frac{4}3\) + \(\frac{4}3\) - \(\frac{1}2\) = \(\frac{13}6\) |
|
| 594. |
Evaluate each of the following: \(\frac{tan45°}{cosec30°}\) +\(\frac{ sec60°}{cot45°}\) - \(\frac{5sin90°}{2cos0°}\) |
|
Answer» \(\frac{tan45°}{cosec30°}\) +\(\frac{ sec60°}{cot45°}\) - \(\frac{5sin90°}{2cos0°}\) = \(\frac{1}{2} + \frac{2}{1} - \frac{5\times 1}{2 \times 1}\) = \(\frac{1}{2} + 2 - \frac{5}{2}\) = 0 |
|
| 595. |
Evaluate each of the following: (cosec2 45° sec2 30°) (sin2 30° + 4 cot2 45° - sec2 60°) |
|
Answer» (cosec2 45° sec2 30°) (sin2 30° + 4 cot2 45° - sec2 60°) = \((2 \times \frac{2}{3})(\frac{1}{4} + 4 \times 1 - 4)\) = \(\frac{4}{3}(\frac{1}{4}+ 4 \times 1 - 4) = \frac{1}{3}\) |
|
| 596. |
Evaluate each of the following: cos2 30° + cos2 45° + cos2 60° + cos2 90° |
|
Answer» cos2 30° + cos2 45° + cos2 60° + cos2 90° = \((\frac{\sqrt{3}}{2})^2 \) + \((\frac{1}{\sqrt{2}})^2 \) + \((\frac{1}{2})^2 \) + (0)2 = \(\frac{3}{4} + \frac{1}{2} + \frac{1}{4} = \frac{3}{2}\) |
|
| 597. |
If tan mθ + cot nθ = 0, then the general value of θ is (a) \(\frac{rπ}{m+n}\)(b) \(\frac{rπ}{m-n}\)(c) \(\frac{(2r+1)π}{(m+n)}\)(d) \(\frac{(2r+1)π}{2(m-n)}\) |
|
Answer» Answer : (d) \(\frac{(2r+1)π}{2(m-n)}\) tan mθ + cot nθ = 0 ⇒ tan mθ = – cot nθ ⇒ tan mθ = tan (π/2 + nθ) (∵ tan (π/2 + x) = – cot x) ⇒ mθ = rπ + π/2 + nθ, r∈I ⇒ (m – n)θ = (2r + 1) π/2, r∈I ⇒ θ = \(\frac{(2r+1)π}{2(m-n)}\) , r \(\in\) I |
|
| 598. |
Prove that the following identities :2(sin6 θ – cos6 θ) – 3(sin4 θ + cos4 θ ) + (sin2 θ + cos2 θ) |
|
Answer» Taking LHS = 2(sin6 θ – cos6 θ) – 3(sin4 θ+ cos4 θ ) + (sin2 θ + cos2 θ) = 2[(sin2 θ)3 – (cos2 θ)3 ] – 3[(sin2 θ)2 + (cos2 θ)2 ]+1 [∵ cos2 θ + sin2 θ = 1] Now, we use these identities, (a3 – b3)= (a + b)3 – 3ab(a + b) and (a2 + b2) = (a +b)2 – 2ab] = 2[(sin2 θ + cos2 θ)3 – 3sin2θ cos2θ (sin2 θ+ cos2 θ)] –3[(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ]+ 1 =2[(1) – 3sin2θ cos2θ (1)] – 3[(1) – 2 sin2 θ cos2 θ] + 1 [∵ cos2 θ + sin2 θ = 1] =2(1 – 3 sin2 θ cos2 θ )– 3 + 6sin2 θ cos2 θ+ 1 = 2– 6sin2θ cos2θ – 2 + 6sin2 θ cos2 θ = 0 = RHS Hence Proved |
|
| 599. |
Prove the following :16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ |
|
Answer» L.H.S. = 16 sin θ cos θ cos 2θ cos 4θ cos 8θ = 8(2sinθ cosθ) cos2θ cos 4θ cos 8θ = 8sin 2θ cos 2θ cos 4θ cos 8θ = 4(2sin 2θ cos 2θ) cos 4θ cos 8θ = 4sin 4θ cos 4θ cos 8θ = 2(2sin 4θ cos 4θ) cos 8θ = 2sin 8θ cos 8θ = sin 16θ = R.H.S. |
|
| 600. |
Prove that the following identities :(sin8θ – cos8θ) = (sin2θ – cos2θ)(1 – 2sin2θ .cos2θ) |
|
Answer» Taking LHS = sin8 θ – cos8 θ = (sin4 θ)2 – (cos4 θ)2 = (sin4 θ – cos4 θ)(sin4 θ+ cos4 θ ) [∵ (a2 – b2) = (a + b) (a – b)] = {(sin2 θ)2 – (cos2 θ)2}{(sin2 θ)2 + (cos2 θ)2} = (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) [(sin2 θ + cos2 θ) – 2 sin2 θ cos2 θ] [ ∵ (a2 + b2) = (a +b)2 – 2ab] = (1)[ sin2 θ –cos2 θ][(1) – 2 sin2 θ cos2 θ] = (sin2 θ – cos2 θ)(1 – 2 sin2 θ cos2 θ) = RHS Hence Proved |
|