Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

If `cot theta+tan theta=2`, then the value of `tan^(2) theta- cot^(2) theta` is _______A. 1B. 0C. `-1`D. `2`

Answer» Correct Answer - B
(i) Put `theta=45^(@)`
(ii) If `tan theta + cot theta =2, " then " theta=45^(@)`.
452.

If `A+B=45^(@)`, then `(1+ tan A)(1+ tan B)`=__________

Answer» Correct Answer - 2
453.

If `tan theta=(5)/(6) and tan phi=(1)/(11)`, then `theta+phi`=______

Answer» Correct Answer - `45^(@)`
454.

If `cot^(4)x-cot^(2)x=1`, then the value of `cos^(4)x+cos^(2)x` is ________A. `-1`B. `0`C. `2`D. `1`

Answer» Correct Answer - D
Use `"cosec"^(2)x=1+cot^(2)x and sin^(2) x + cos^(2)x=1`.
455.

A+B+C=45 degree then the value of Σ(tanA+tanAtanB)=A. `1- pi tanA`B. `1`C. `1+ pi tan A`D. `1+ sumtanA`

Answer» Correct Answer - C
Use `tan(A+B)=tan (45^(@)-C)` and proceed.
456.

If `(cos (A-B))/(cos(A+B))=(8)/(3)`, then `tanA*tanB` is _____A. `(5)/(11)`B. `(7)/(13)`C. `(8)/(5)`D. `(11)/(5)`

Answer» Correct Answer - A
(i) Use componendo and dividendo theorem , i.e.,
`(a)/(b)=(a+b)/(a-b)`
(ii) Use the formula ` cos(A-B) and cos (A+B)`.
(iii) Take cross multiplication and find `tanA+ tan B`.
457.

If `tan 2 alpha=(3)/(4)`, then find `tan alpha`.

Answer» Correct Answer - `(1)/(3) or -3`
458.

If `sin(A+B)=(sqrt(3))/(2) and cot (A-B)=1`, then find A and B.

Answer» Correct Answer - `A=52(1^(@))/(2) and B=7(1^(@))/(2)`
459.

If `A+B=45^(@)`, then find the value of `tanA+tanB+tanA tanB`.

Answer» Correct Answer - 1
460.

Show that none of the following is an identity:(i) cos2θ + cosθ = 1 (ii) sin2θ + sinθ =  1(iii) tan2θ + sinθ = cos2θ

Answer»

(i) cos2θ + cosθ = 1 

LHS = cos2 θ + cos θ 

=1 − sin2 θ + cos θ 

= 1 − (sin2 θ − cos θ) 

Since LHS ≠ RHS, this not an identity.

(ii) sin2θ + sinθ =  1

LHS = sin2 θ + sin θ 

= 1 − cos2 θ + sin θ

= 1 − (cos2 θ − sin θ) 

Since LHS ≠ RHS, this is not an identity.

(iii) tan2θ + sinθ = cos2θ

LHS = tan2 θ + sin θ

\(\frac{sin^2θ}{cos^2θ}\) + sinθ

\(\frac{1-cos^2θ}{cos^2θ}\)+ sinθ

= sec2 θ − 1 + sin θ 

Since LHS ≠ RHS, this is not an identity.

461.

If `sin A=(3)/(4)` and A is not in the first quadrant, then find `(cosA+cos2A)/(tanA+secA)`.

Answer» Correct Answer - `(22)/(25)`
462.

What is the value of cot (– 870º)?

Answer»

cot (– 870°) = – cot 870°               ( cot (– θ) = – cot θ) 

= – cot (720° + 150°) = – cot (2 x 360° + 150°)

= – cot 150° = – cot (90° + 60°)          ( cot (n .360° + θ) = cot θ, n ∈ N) 

= – (– tan 60°)                          (cot (90° + θ) = – tan θ) 

= tan 60° = √3 .

463.

The general solution of sin 3x + sin x – 3 sin 2x = cos 3x + cos x – 3 cos 2x is(a)  \(\frac{nπ}{2}+ \frac{π}{8}\) ,  n ∈ I(b)  \(\frac{nπ}{2}- \frac{π}{8}\) ,  n ∈ I (c)  \(nπ+ \frac{π}{8}\) ,  n ∈ I(d)  \(nπ- \frac{π}{8}\) ,  n ∈ I

Answer»

Answer : (a) \(\frac{nπ}{2}+\frac{π}{8}\), n ∈ I

(sin 3x + sin x) – 3 sin 2x = (cos 3x + cos x) – 3 cos 2x 

⇒ 2 sin 2x cos x – 3 sin 2x = 2 cos 2x . cos x – 3 cos 2x 

⇒ sin 2x (2 cos x – 3) = cos 2x (2 cos x – 3) 

⇒ (2 cos x – 3) (sin 2x – cos 2x) = 0 

⇒ (2 cos x – 3) = 0 or (sin 2x – cos 2x) = 0 

⇒ cos x = \(\frac{3}{2}\) or sin 2x = cos 2x 

∵  – 1 ≤ cos x ≤ 1, cos x ≠  \(\frac{3}{2}\)

∴ sin 2x = cos 2x ⇒ tan 2x = 1 

⇒ tan 2x = tan (π/4) 

⇒ 2x = nπ + π/4

x = \(\frac{nπ}{2}+\frac{π}{8}\), n ∈ I

464.

Evaluate the following :cosec230°.tan245° – sec260°

Answer»

We know that

cosec (30°) = 2

Tan(45°) = 1

sec (60°) = 2

Now putting the values;

= (2)2 × (1)2 - (2)2

= 4 – 4

= 0

465.

Evaluate the following :cosec230°. tan245° – sec260°

Answer»

We know that

cosec (30o) = 2

Tan(45o) = 1

sec (60o) = 2

Now putting the values;

= (2)2 × (1)2 - (2)2

= 4 – 4

= 0

466.

Find the numerical value of the following :sin90° – cos0° + tan0° + tan45°

Answer»

We know that

Sin (90o) = 1

Cos (0o) = 1

Tan(0o) = 0

Tan(45o) = 1

Now putting the value, we get

= 1 – 1 + 0 + 1

= 1

467.

Evaluate each of the following:tan2 30° + tan2 60° + tan2 45°

Answer»

tan2 30° + tan2 60° + tan2 45°

\((\frac{1}{\sqrt3})^2\) + \((\sqrt3)^2\) + (1)2

\(\frac{1}3+3+1\) = \(\frac{13}3\)

468.

Evaluate each of the following:cos2 30° + cos2 45° + cos2 60°+ cos2 90°

Answer»

cos30° + cos45° + cos60°+ cos90°

\((\frac{\sqrt3}{2})^2\) + \((\frac{1}{\sqrt{2}})^2\) = \((\frac{1}{2})^2\) + (0)2

\(\frac{3}4\) + \(\frac{1}2\) + \(\frac{1}4\) = \(\frac{3}2\)

469.

Evaluate each of the following:sin2 30° + sin2 45° + sin2 60°+ sin2 90°

Answer»

sin30° + sin45° + sin60°+ sin90°

\((\frac{1}2)^2\) + \((\frac{1}{\sqrt2})^2\) + \((\frac{\sqrt3}2)^2\) + (1)

\(\frac{1}4\) + \(\frac{1}2\) + \(\frac{3}4\) + 1 = \(\frac{5}2\)

470.

If `alpha=(4)/(5) and alpha=(4)/(5)`, then which of the following is true?A. `alphaltbeta`B. `alphalgtbeta`C. `alpha=beta`D. None of these

Answer» Correct Answer - B
Find `sinbetaand compare sinalpha and sinbeta`.
471.

If ina triangle ABC, A and B are complementary, then tan C isA. `infty`B. 0C. 1D. `sqrt3`

Answer» Correct Answer - A
`A+B = 90^(@) and A+B+C=180^(@)`.
472.

If `sin x^(@)=sinalpha , "then " alpha " is"`A. `(180)/(pi)`B. `(pi)/(270)`C. `(270)/(pi)`D. `(pi)/(180)`

Answer» Correct Answer - D
Using the relation between degree and radians.
473.

If `cotA=(5)/(12) and A " is not in the first quardant, then " (sinA-cosA)/(1+cotA)`is __________.A. `(-74)/(25)`B. `(-84)/(221)`C. `(-87)/(223)`D. None of these

Answer» Correct Answer - C
(i) cot A is positive in the first and the third quadrants. As cot A not in first quadrant, cot A in third quadrant.
(ii) Using the right angle traingle find the values of sin A, cos A and cot A in third quadrant.
474.

If `2 sinalpha+3cosalpha=2, " then " 3 sinalpha-2cosalpha`= _________.A. `pm3`B. `pm2`C. 0D. `pm2`

Answer» Correct Answer - B
Put `3sinalpha-2cosalpha=k`, square the two equations and add.
475.

If `(sin^(2)alpha-3 sinalpha+2)/(cos^(2)alpha)=1`, then `alpha` can be ___________.A. `60^(@)`B. `45^(@)`C. `0^(@)`D. `30^(@)`

Answer» Correct Answer - D
Use the identify `cos^(2)alpha+sin^(2)alpha=1` and convert the equation into quadratic form in terms of `sinalpha`and then solve.
476.

If `(1+sinalpha)/(1-sinalpha)=(m^(2))/(n^(2)), then sinalpha` is __________.A. `(m^(2)+n^(2))/(m^(2)-n^(2))`B. `(m^(2)-n^(2))/(m^(2)+n^(2))`C. `(m^(2)+n^(2))/(n^(2)-m^(2))`D. `(n^(2)-m^(2))/(m^(2)+n^(2))`

Answer» Correct Answer - C
App,y componendo-dividendo rule, i.e., if `(a)/(b)=(c)/(d), and(a+b)/(a-b)=(c+d)/(c-d)`.
477.

State whether the following are true or false. Justify your answer.The value of cos θ increases as θ increases.

Answer»

cos 0° = 1 cos 30° = \(\frac{\sqrt3}{2}\) = 0.87 

cos 45° = \(\frac{1}{\sqrt 2}\)= 0.7 cos 60° = \(\frac{1}{2}\)= 0.5 

cos 90° = 1 

∴ The value of cos 0 increases as 0 increases – the statement is False.

478.

State whether the following are true or false. Justify your answer.sin θ = cos θ for all values of θ.

Answer»

False. 

sin 30° = \(\frac{1}{2}\) cos 30° = \(\frac{\sqrt 3}{2}\)

sin 30° ≠ cos 30° 

But sin 45° = cos 45° = \(\frac{1}{\sqrt 2}\)

479.

`(1-cos2theta)/(2)`=________ ( in terms of `sintheta`).

Answer» Correct Answer - `sin^(2)theta`
480.

If `sintheta-costheta=(3)/(5), then sinthetacostheta`=________________.A. `(16)/(25)`B. `(9)/(16)`C. `(9)/(25)`D. `(8)/(25)`

Answer» Correct Answer - C
Square the given equation, then use the identity `cos^(2)theta+sin^(2)theta=1` to evaluate the value of `sintheta costheta`
481.

If ABCD is a cyclic quadrilateral, then `tan A +tan C`=_________.

Answer» Correct Answer - `0^(@)`
482.

If ABCD is a cyclic quadrilateral, then the value of `cos^(2)A-cos^(2)B-cos^(2)C+cos^(2)D` is ______.

Answer» Correct Answer - B
(i) In a cyclic quadrilateral, sum of the opposite angle is `180^(@)`.
(ii) Use the result, `cos(180-theta)=-costheta` and simplify.
483.

The length of the minutes hand of a wall clock is 36 cm. Find the distance covered by its tip in 35 minutes.

Answer» Correct Answer - 132 cm
484.

The length of minute hand of a wall clock is 12 cm. find the distance covered by the tip of the minutes hand in 25 minutes.A. `(220)/(7)`cmB. `(110)/(7)`cmC. `(120)/(7)`cmD. `(240)/(7)`cm

Answer» Correct Answer - B
`l=rtheta`, where l= length , r= radians and `theta` = angle in radians
485.

In a `DeltaABC, cos((A+B)/(2))`=_________A. `cos""(C )/(2)`B. `-sin""( C)/(2)`C. `cos""((A-B)/(2))`D. `sin""(C )/(2)`

Answer» Correct Answer - D
In triangle ABC, `(A+B)/(2)=(180-C)/(2)`
486.

If `sin alpha and cos alpha` are the roots of the equation `ax^(2)-bx-1=0`, then find the relation between a and b.

Answer» The given equation is `ax^(2)-bx-1=0`.
Here, `a=a,b=-b and c=-1`.
`sin alpha + cos alpha=(-b)/(a)=(-(-b))/(a)=(b)/(a)`
`sin alpha * cos alpha=(c)/(a)=(-1)/(a)`.
Consider,
`sin alpha+ cos alpha=(-b)/(a)`
Squaring on both sides,
`(sin alpha+ cos alpha)^(2)=((-b)/(a))^(2)`
`=1+2((-1)/(a))=(b^(2))/(a^(2))`
`=1-(b^(2))/(a^(2))=(2)/(a)`
`:. a^(2)-b^(2)=2a`
487.

If `cos alpha=(2)/(3) and sin beta=(1)/(4)`, then find `cos(alpha-beta)`.

Answer» Given,
`cos alpha=(2)/(3)implies sin alpha=(sqrt(5))/(3)`
`sin beta=(1)/(4)implies cos beta=(sqrt(15))/(4)`
`cos(alpha-beta)= cos alpha* cos beta+ sin alpha* sin beta=(2)/(3)xx(sqrt(15))/(4)+(sqrt(5))/(3)xx(1)/(4)`
`cos(alpha-beta)=(2sqrt(15)+sqrt(5))/(12)`.
488.

The length of an arc, which subtends an angle of `30^(@)` at the centre of the circle of radius 42 cm is _________A. 22 cmB. 44 cmC. 11 cmD. `(22)/(7)`cm

Answer» Correct Answer - A
Use ` l=rxx theta `, where ` theta ` is in radians.
489.

Prove the followings identities:(1 + cos θ)(1 – cos θ) = sin2θ

Answer»

Taking LHS = (1 – cosθ)(1+ cosθ)

Using identity , (a + b) (a – b) = (a2 – b2) , we get

= (1)2 – (cosθ)2

= 1 – cos2 θ

= sin2 θ [∵ cos2 θ + sin2 θ = 1]

= RHS

Hence Proved

490.

What is the value of sec (90 – θ)°. sin θ sec 45°?(a) 1 (b) \(\frac{\sqrt3}{2}\) (c) √2 (d) √3

Answer»

(c) √2

sec (90 – θ)° sin θ sec 45° 

= cosec θ sin θ. (√2) = \(\frac1{sin\,\theta}\) . sin θ = √2 = √2.

491.

Prove that :sin 42°. cos 48° + cos 42° . sin 48° = 1

Answer»

Taking LHS

= sin 42° cos 48° + cos 42° sin 48°

= cos (90° - 42°) cos 48° + sin (90° - 42°) sin 48°

[∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]

= cos 48° cos 48° + sin 48° sin 48°

= cos2 48° + sin2 48°

= 1 [∵ cos2 θ + sin2 θ = 1]

= LHS = RHS

Hence Proved

492.

The value of \(\frac{1}{cosec(-45°)}\) is:(a) \(\frac{-1}{\sqrt{2}}\)(b) \(\frac{1}{\sqrt{2}}\)(c) √2 (d) -√2

Answer»

(a) \(\frac{-1}{\sqrt{2}}\)

\(\frac{1}{cosec(-45°)}\) = sin(-45°)

= -sin 45° 

\(\frac{-1}{\sqrt{2}}\)

493.

The value of cos2 45° – sin2 45° is: (a) \(\frac{\sqrt{3}}{2}\)(b) \(\frac{1}{2}\)(c) 0 (d) \(\frac{1}{\sqrt{2}}\)

Answer»

(c) 0

cos2 45° – sin2 45° 

= cos 2 x 45° (∵ cos2 A – sin2 A = cos 2A) 

= cos 90° 

= 0

494.

The value of 1 – 2 sin2 45° is: (a) 1(b) \(\frac{1}{2}\)(c) \(\frac{1}{4}\)(d) 0

Answer»

(d) 0

1 – 2 sin2 45° 

= cos(2 x 45°) [∵ cos 2A = 1 – 2 sin2 A] 

= cos 90° 

= 0

495.

Prove that :cos θ . cos(90° – θ) + sin θ sin (90° – θ) = 0

Answer»

Taking LHS = cos θ cos ( 90° - θ) + sin θ sin (90° - θ)

⇒ cos θ × sin θ – sinθ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]

= 0 = RHS

Hence Proved

496.

Write the value of tan1°tan2°......tan89°.

Answer»

tan1°tan2°......tan89°

= tan 1° tan 2° tan 3° … tan 45° … tan 87° tan 88° tan 89° 

= tan 1° tan 2° tan 3° … tan 45° … cot(90° − 87°) cot(90° − 88°) cot(90° − 89°) 

= tan 1° tan 2° tan 3° … tan 45° … cot 3° cot 2° cot 1° 

= tan 1° × tan 2° × tan 3° × …×1× …× 1/tan 3° × 1/tan 2° × 1/tan 1° 

= 1

497.

Prove that :sin θ .cos (90° - θ) + cos θ sin (90° - θ).

Answer»

Taking LHS = sin θ cos (90° - θ) + cos θ sin (90° - θ)

⇒ sin θ × sin θ + cos θ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ]

⇒ cos2 θ + sin2 θ [∵ cos2 θ + sin2 θ = 1]

= 1 = RHS

Hence Proved

498.

Write the value of tan10° tan 20° tan 70° tan 80°.

Answer»

tan10° tan 20° tan 70° tan 80°

= cot(90° − 10° ) cot(90° − 20° ) tan70° tan80° 

= cot80° cot70° tan70° tan80°

= 1/tan 80° × 1/tan 70° × tan 70° × tan 80° 

= 1

499.

Prove that :sin229° + sin261° = 1

Answer»

Taking LHS= sin229o + sin261o

⇒ cos2 (90° - 29°) + sin2 61° [∵ Sin θ = cos (90° - θ)]

⇒ cos2 61° + sin2 61°

= 1 =RHS [∵ cos2 θ + sin2 θ = 1]

Hence Proved

500.

If p sec 50° = tan 50° then p is: (a) cos 50° (b) sin 50° (c) tan 50° (d) sec 50°

Answer»

(b) sin 50°

p sec 50° = tan 50°

p(\(\frac{1}{cos50°}\)) = \(\frac{sin50°}{cos50°}\)

∴ p = sin 50°