InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 451. |
If `cot theta+tan theta=2`, then the value of `tan^(2) theta- cot^(2) theta` is _______A. 1B. 0C. `-1`D. `2` |
|
Answer» Correct Answer - B (i) Put `theta=45^(@)` (ii) If `tan theta + cot theta =2, " then " theta=45^(@)`. |
|
| 452. |
If `A+B=45^(@)`, then `(1+ tan A)(1+ tan B)`=__________ |
| Answer» Correct Answer - 2 | |
| 453. |
If `tan theta=(5)/(6) and tan phi=(1)/(11)`, then `theta+phi`=______ |
| Answer» Correct Answer - `45^(@)` | |
| 454. |
If `cot^(4)x-cot^(2)x=1`, then the value of `cos^(4)x+cos^(2)x` is ________A. `-1`B. `0`C. `2`D. `1` |
|
Answer» Correct Answer - D Use `"cosec"^(2)x=1+cot^(2)x and sin^(2) x + cos^(2)x=1`. |
|
| 455. |
A+B+C=45 degree then the value of Σ(tanA+tanAtanB)=A. `1- pi tanA`B. `1`C. `1+ pi tan A`D. `1+ sumtanA` |
|
Answer» Correct Answer - C Use `tan(A+B)=tan (45^(@)-C)` and proceed. |
|
| 456. |
If `(cos (A-B))/(cos(A+B))=(8)/(3)`, then `tanA*tanB` is _____A. `(5)/(11)`B. `(7)/(13)`C. `(8)/(5)`D. `(11)/(5)` |
|
Answer» Correct Answer - A (i) Use componendo and dividendo theorem , i.e., `(a)/(b)=(a+b)/(a-b)` (ii) Use the formula ` cos(A-B) and cos (A+B)`. (iii) Take cross multiplication and find `tanA+ tan B`. |
|
| 457. |
If `tan 2 alpha=(3)/(4)`, then find `tan alpha`. |
| Answer» Correct Answer - `(1)/(3) or -3` | |
| 458. |
If `sin(A+B)=(sqrt(3))/(2) and cot (A-B)=1`, then find A and B. |
| Answer» Correct Answer - `A=52(1^(@))/(2) and B=7(1^(@))/(2)` | |
| 459. |
If `A+B=45^(@)`, then find the value of `tanA+tanB+tanA tanB`. |
| Answer» Correct Answer - 1 | |
| 460. |
Show that none of the following is an identity:(i) cos2θ + cosθ = 1 (ii) sin2θ + sinθ = 1(iii) tan2θ + sinθ = cos2θ |
|
Answer» (i) cos2θ + cosθ = 1 LHS = cos2 θ + cos θ =1 − sin2 θ + cos θ = 1 − (sin2 θ − cos θ) Since LHS ≠ RHS, this not an identity. (ii) sin2θ + sinθ = 1 LHS = sin2 θ + sin θ = 1 − cos2 θ + sin θ = 1 − (cos2 θ − sin θ) Since LHS ≠ RHS, this is not an identity. (iii) tan2θ + sinθ = cos2θ LHS = tan2 θ + sin θ = \(\frac{sin^2θ}{cos^2θ}\) + sinθ = \(\frac{1-cos^2θ}{cos^2θ}\)+ sinθ = sec2 θ − 1 + sin θ Since LHS ≠ RHS, this is not an identity. |
|
| 461. |
If `sin A=(3)/(4)` and A is not in the first quadrant, then find `(cosA+cos2A)/(tanA+secA)`. |
| Answer» Correct Answer - `(22)/(25)` | |
| 462. |
What is the value of cot (– 870º)? |
|
Answer» cot (– 870°) = – cot 870° (∵ cot (– θ) = – cot θ) = – cot (720° + 150°) = – cot (2 x 360° + 150°) = – cot 150° = – cot (90° + 60°) (∵ cot (n .360° + θ) = cot θ, n ∈ N) = – (– tan 60°) (∵cot (90° + θ) = – tan θ) = tan 60° = √3 . |
|
| 463. |
The general solution of sin 3x + sin x – 3 sin 2x = cos 3x + cos x – 3 cos 2x is(a) \(\frac{nπ}{2}+ \frac{π}{8}\) , n ∈ I(b) \(\frac{nπ}{2}- \frac{π}{8}\) , n ∈ I (c) \(nπ+ \frac{π}{8}\) , n ∈ I(d) \(nπ- \frac{π}{8}\) , n ∈ I |
|
Answer» Answer : (a) \(\frac{nπ}{2}+\frac{π}{8}\), n ∈ I (sin 3x + sin x) – 3 sin 2x = (cos 3x + cos x) – 3 cos 2x ⇒ 2 sin 2x cos x – 3 sin 2x = 2 cos 2x . cos x – 3 cos 2x ⇒ sin 2x (2 cos x – 3) = cos 2x (2 cos x – 3) ⇒ (2 cos x – 3) (sin 2x – cos 2x) = 0 ⇒ (2 cos x – 3) = 0 or (sin 2x – cos 2x) = 0 ⇒ cos x = \(\frac{3}{2}\) or sin 2x = cos 2x ∵ – 1 ≤ cos x ≤ 1, cos x ≠ \(\frac{3}{2}\) ∴ sin 2x = cos 2x ⇒ tan 2x = 1 ⇒ tan 2x = tan (π/4) ⇒ 2x = nπ + π/4 ⇒ x = \(\frac{nπ}{2}+\frac{π}{8}\), n ∈ I |
|
| 464. |
Evaluate the following :cosec230°.tan245° – sec260° |
|
Answer» We know that cosec (30°) = 2 Tan(45°) = 1 sec (60°) = 2 Now putting the values; = (2)2 × (1)2 - (2)2 = 4 – 4 = 0 |
|
| 465. |
Evaluate the following :cosec230°. tan245° – sec260° |
|
Answer» We know that cosec (30o) = 2 Tan(45o) = 1 sec (60o) = 2 Now putting the values; = (2)2 × (1)2 - (2)2 = 4 – 4 = 0 |
|
| 466. |
Find the numerical value of the following :sin90° – cos0° + tan0° + tan45° |
|
Answer» We know that Sin (90o) = 1 Cos (0o) = 1 Tan(0o) = 0 Tan(45o) = 1 Now putting the value, we get = 1 – 1 + 0 + 1 = 1 |
|
| 467. |
Evaluate each of the following:tan2 30° + tan2 60° + tan2 45° |
|
Answer» tan2 30° + tan2 60° + tan2 45° = \((\frac{1}{\sqrt3})^2\) + \((\sqrt3)^2\) + (1)2 = \(\frac{1}3+3+1\) = \(\frac{13}3\) |
|
| 468. |
Evaluate each of the following:cos2 30° + cos2 45° + cos2 60°+ cos2 90° |
|
Answer» cos2 30° + cos2 45° + cos2 60°+ cos2 90° = \((\frac{\sqrt3}{2})^2\) + \((\frac{1}{\sqrt{2}})^2\) = \((\frac{1}{2})^2\) + (0)2 = \(\frac{3}4\) + \(\frac{1}2\) + \(\frac{1}4\) = \(\frac{3}2\) |
|
| 469. |
Evaluate each of the following:sin2 30° + sin2 45° + sin2 60°+ sin2 90° |
|
Answer» sin2 30° + sin2 45° + sin2 60°+ sin2 90° = \((\frac{1}2)^2\) + \((\frac{1}{\sqrt2})^2\) + \((\frac{\sqrt3}2)^2\) + (1)2 = \(\frac{1}4\) + \(\frac{1}2\) + \(\frac{3}4\) + 1 = \(\frac{5}2\) |
|
| 470. |
If `alpha=(4)/(5) and alpha=(4)/(5)`, then which of the following is true?A. `alphaltbeta`B. `alphalgtbeta`C. `alpha=beta`D. None of these |
|
Answer» Correct Answer - B Find `sinbetaand compare sinalpha and sinbeta`. |
|
| 471. |
If ina triangle ABC, A and B are complementary, then tan C isA. `infty`B. 0C. 1D. `sqrt3` |
|
Answer» Correct Answer - A `A+B = 90^(@) and A+B+C=180^(@)`. |
|
| 472. |
If `sin x^(@)=sinalpha , "then " alpha " is"`A. `(180)/(pi)`B. `(pi)/(270)`C. `(270)/(pi)`D. `(pi)/(180)` |
|
Answer» Correct Answer - D Using the relation between degree and radians. |
|
| 473. |
If `cotA=(5)/(12) and A " is not in the first quardant, then " (sinA-cosA)/(1+cotA)`is __________.A. `(-74)/(25)`B. `(-84)/(221)`C. `(-87)/(223)`D. None of these |
|
Answer» Correct Answer - C (i) cot A is positive in the first and the third quadrants. As cot A not in first quadrant, cot A in third quadrant. (ii) Using the right angle traingle find the values of sin A, cos A and cot A in third quadrant. |
|
| 474. |
If `2 sinalpha+3cosalpha=2, " then " 3 sinalpha-2cosalpha`= _________.A. `pm3`B. `pm2`C. 0D. `pm2` |
|
Answer» Correct Answer - B Put `3sinalpha-2cosalpha=k`, square the two equations and add. |
|
| 475. |
If `(sin^(2)alpha-3 sinalpha+2)/(cos^(2)alpha)=1`, then `alpha` can be ___________.A. `60^(@)`B. `45^(@)`C. `0^(@)`D. `30^(@)` |
|
Answer» Correct Answer - D Use the identify `cos^(2)alpha+sin^(2)alpha=1` and convert the equation into quadratic form in terms of `sinalpha`and then solve. |
|
| 476. |
If `(1+sinalpha)/(1-sinalpha)=(m^(2))/(n^(2)), then sinalpha` is __________.A. `(m^(2)+n^(2))/(m^(2)-n^(2))`B. `(m^(2)-n^(2))/(m^(2)+n^(2))`C. `(m^(2)+n^(2))/(n^(2)-m^(2))`D. `(n^(2)-m^(2))/(m^(2)+n^(2))` |
|
Answer» Correct Answer - C App,y componendo-dividendo rule, i.e., if `(a)/(b)=(c)/(d), and(a+b)/(a-b)=(c+d)/(c-d)`. |
|
| 477. |
State whether the following are true or false. Justify your answer.The value of cos θ increases as θ increases. |
|
Answer» cos 0° = 1 cos 30° = \(\frac{\sqrt3}{2}\) = 0.87 cos 45° = \(\frac{1}{\sqrt 2}\)= 0.7 cos 60° = \(\frac{1}{2}\)= 0.5 cos 90° = 1 ∴ The value of cos 0 increases as 0 increases – the statement is False. |
|
| 478. |
State whether the following are true or false. Justify your answer.sin θ = cos θ for all values of θ. |
|
Answer» False. sin 30° = \(\frac{1}{2}\) cos 30° = \(\frac{\sqrt 3}{2}\) sin 30° ≠ cos 30° But sin 45° = cos 45° = \(\frac{1}{\sqrt 2}\) |
|
| 479. |
`(1-cos2theta)/(2)`=________ ( in terms of `sintheta`). |
| Answer» Correct Answer - `sin^(2)theta` | |
| 480. |
If `sintheta-costheta=(3)/(5), then sinthetacostheta`=________________.A. `(16)/(25)`B. `(9)/(16)`C. `(9)/(25)`D. `(8)/(25)` |
|
Answer» Correct Answer - C Square the given equation, then use the identity `cos^(2)theta+sin^(2)theta=1` to evaluate the value of `sintheta costheta` |
|
| 481. |
If ABCD is a cyclic quadrilateral, then `tan A +tan C`=_________. |
| Answer» Correct Answer - `0^(@)` | |
| 482. |
If ABCD is a cyclic quadrilateral, then the value of `cos^(2)A-cos^(2)B-cos^(2)C+cos^(2)D` is ______. |
|
Answer» Correct Answer - B (i) In a cyclic quadrilateral, sum of the opposite angle is `180^(@)`. (ii) Use the result, `cos(180-theta)=-costheta` and simplify. |
|
| 483. |
The length of the minutes hand of a wall clock is 36 cm. Find the distance covered by its tip in 35 minutes. |
| Answer» Correct Answer - 132 cm | |
| 484. |
The length of minute hand of a wall clock is 12 cm. find the distance covered by the tip of the minutes hand in 25 minutes.A. `(220)/(7)`cmB. `(110)/(7)`cmC. `(120)/(7)`cmD. `(240)/(7)`cm |
|
Answer» Correct Answer - B `l=rtheta`, where l= length , r= radians and `theta` = angle in radians |
|
| 485. |
In a `DeltaABC, cos((A+B)/(2))`=_________A. `cos""(C )/(2)`B. `-sin""( C)/(2)`C. `cos""((A-B)/(2))`D. `sin""(C )/(2)` |
|
Answer» Correct Answer - D In triangle ABC, `(A+B)/(2)=(180-C)/(2)` |
|
| 486. |
If `sin alpha and cos alpha` are the roots of the equation `ax^(2)-bx-1=0`, then find the relation between a and b. |
|
Answer» The given equation is `ax^(2)-bx-1=0`. Here, `a=a,b=-b and c=-1`. `sin alpha + cos alpha=(-b)/(a)=(-(-b))/(a)=(b)/(a)` `sin alpha * cos alpha=(c)/(a)=(-1)/(a)`. Consider, `sin alpha+ cos alpha=(-b)/(a)` Squaring on both sides, `(sin alpha+ cos alpha)^(2)=((-b)/(a))^(2)` `=1+2((-1)/(a))=(b^(2))/(a^(2))` `=1-(b^(2))/(a^(2))=(2)/(a)` `:. a^(2)-b^(2)=2a` |
|
| 487. |
If `cos alpha=(2)/(3) and sin beta=(1)/(4)`, then find `cos(alpha-beta)`. |
|
Answer» Given, `cos alpha=(2)/(3)implies sin alpha=(sqrt(5))/(3)` `sin beta=(1)/(4)implies cos beta=(sqrt(15))/(4)` `cos(alpha-beta)= cos alpha* cos beta+ sin alpha* sin beta=(2)/(3)xx(sqrt(15))/(4)+(sqrt(5))/(3)xx(1)/(4)` `cos(alpha-beta)=(2sqrt(15)+sqrt(5))/(12)`. |
|
| 488. |
The length of an arc, which subtends an angle of `30^(@)` at the centre of the circle of radius 42 cm is _________A. 22 cmB. 44 cmC. 11 cmD. `(22)/(7)`cm |
|
Answer» Correct Answer - A Use ` l=rxx theta `, where ` theta ` is in radians. |
|
| 489. |
Prove the followings identities:(1 + cos θ)(1 – cos θ) = sin2θ |
|
Answer» Taking LHS = (1 – cosθ)(1+ cosθ) Using identity , (a + b) (a – b) = (a2 – b2) , we get = (1)2 – (cosθ)2 = 1 – cos2 θ = sin2 θ [∵ cos2 θ + sin2 θ = 1] = RHS Hence Proved |
|
| 490. |
What is the value of sec (90 – θ)°. sin θ sec 45°?(a) 1 (b) \(\frac{\sqrt3}{2}\) (c) √2 (d) √3 |
|
Answer» (c) √2 sec (90 – θ)° sin θ sec 45° = cosec θ sin θ. (√2) = \(\frac1{sin\,\theta}\) . sin θ = √2 = √2. |
|
| 491. |
Prove that :sin 42°. cos 48° + cos 42° . sin 48° = 1 |
|
Answer» Taking LHS = sin 42° cos 48° + cos 42° sin 48° = cos (90° - 42°) cos 48° + sin (90° - 42°) sin 48° [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ] = cos 48° cos 48° + sin 48° sin 48° = cos2 48° + sin2 48° = 1 [∵ cos2 θ + sin2 θ = 1] = LHS = RHS Hence Proved |
|
| 492. |
The value of \(\frac{1}{cosec(-45°)}\) is:(a) \(\frac{-1}{\sqrt{2}}\)(b) \(\frac{1}{\sqrt{2}}\)(c) √2 (d) -√2 |
|
Answer» (a) \(\frac{-1}{\sqrt{2}}\) \(\frac{1}{cosec(-45°)}\) = sin(-45°) = -sin 45° = \(\frac{-1}{\sqrt{2}}\) |
|
| 493. |
The value of cos2 45° – sin2 45° is: (a) \(\frac{\sqrt{3}}{2}\)(b) \(\frac{1}{2}\)(c) 0 (d) \(\frac{1}{\sqrt{2}}\) |
|
Answer» (c) 0 cos2 45° – sin2 45° = cos 2 x 45° (∵ cos2 A – sin2 A = cos 2A) = cos 90° = 0 |
|
| 494. |
The value of 1 – 2 sin2 45° is: (a) 1(b) \(\frac{1}{2}\)(c) \(\frac{1}{4}\)(d) 0 |
|
Answer» (d) 0 1 – 2 sin2 45° = cos(2 x 45°) [∵ cos 2A = 1 – 2 sin2 A] = cos 90° = 0 |
|
| 495. |
Prove that :cos θ . cos(90° – θ) + sin θ sin (90° – θ) = 0 |
|
Answer» Taking LHS = cos θ cos ( 90° - θ) + sin θ sin (90° - θ) ⇒ cos θ × sin θ – sinθ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ] = 0 = RHS Hence Proved |
|
| 496. |
Write the value of tan1°tan2°......tan89°. |
|
Answer» tan1°tan2°......tan89° = tan 1° tan 2° tan 3° … tan 45° … tan 87° tan 88° tan 89° = tan 1° tan 2° tan 3° … tan 45° … cot(90° − 87°) cot(90° − 88°) cot(90° − 89°) = tan 1° tan 2° tan 3° … tan 45° … cot 3° cot 2° cot 1° = tan 1° × tan 2° × tan 3° × …×1× …× 1/tan 3° × 1/tan 2° × 1/tan 1° = 1 |
|
| 497. |
Prove that :sin θ .cos (90° - θ) + cos θ sin (90° - θ). |
|
Answer» Taking LHS = sin θ cos (90° - θ) + cos θ sin (90° - θ) ⇒ sin θ × sin θ + cos θ × cos θ [∵ Sin θ = cos (90° - θ) and cos θ = sin (90° - θ) ] ⇒ cos2 θ + sin2 θ [∵ cos2 θ + sin2 θ = 1] = 1 = RHS Hence Proved |
|
| 498. |
Write the value of tan10° tan 20° tan 70° tan 80°. |
|
Answer» tan10° tan 20° tan 70° tan 80° = cot(90° − 10° ) cot(90° − 20° ) tan70° tan80° = cot80° cot70° tan70° tan80° = 1/tan 80° × 1/tan 70° × tan 70° × tan 80° = 1 |
|
| 499. |
Prove that :sin229° + sin261° = 1 |
|
Answer» Taking LHS= sin229o + sin261o ⇒ cos2 (90° - 29°) + sin2 61° [∵ Sin θ = cos (90° - θ)] ⇒ cos2 61° + sin2 61° = 1 =RHS [∵ cos2 θ + sin2 θ = 1] Hence Proved |
|
| 500. |
If p sec 50° = tan 50° then p is: (a) cos 50° (b) sin 50° (c) tan 50° (d) sec 50° |
|
Answer» (b) sin 50° p sec 50° = tan 50° p(\(\frac{1}{cos50°}\)) = \(\frac{sin50°}{cos50°}\) ∴ p = sin 50° |
|