InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 351. |
Find the value of `sin 2 alpha, if sin alpha+ cos alpha=(1)/(3)`. |
| Answer» Correct Answer - `-(1)/(x)` | |
| 352. |
A wheel makes 200 revolution in 2 minutes. Find the measure of the angle it describes at the centre in 24 seconds. |
| Answer» Correct Answer - `80pi^(c )` | |
| 353. |
If `sin alpha=(4)/(5)`, then find the value of `sin 2 alpha `. |
| Answer» Correct Answer - `(24)/(25)` | |
| 354. |
Find the length of the chord subtending an angle of `120^(@)` at the centre of the circle whose radius is 4 cm. |
| Answer» Correct Answer - `4sqrt(3)` cm | |
| 355. |
Express `sin theta ` in terms of ` cot theta`. |
| Answer» Correct Answer - `sqrt((1)/(1+cot^(2) theta))` | |
| 356. |
Find the value of `tan75^(@)` |
| Answer» Correct Answer - `(sqrt(3)+1)/(sqrt(3)-1)` | |
| 357. |
If `cos alpha=(12)/(13) and sin beta=(4)/(5)`, then find `sin(alpha+beta)`. |
| Answer» Correct Answer - `(63)/(65)` | |
| 358. |
If `sec^(2)alpha+cos^(2)alpha=2`, then find the value of `sec alpha+ cos alpha`. |
| Answer» Correct Answer - `pm2` | |
| 359. |
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°(i) sin 59° + cos 56°(ii) tan 65° + cot 49°(iii) sec 76° + cosec 52°(iv) cost 78° + sec 78° |
|
Answer» sin(90° - θ) = cos θ cos (90° - θ) = sinθ tan (90° - θ) = cotθ cot (90° - θ) = tanθ sec(90° - θ) = cosecθ cosec(90° - θ) = secθ (i) sin 59° + cos 56° = sin (90° - 31°) + cos (90° - 34°) = cos 31° + sin 34° (ii) tan 65° + cot 49° = tan (90° - 25°) + cot (90° - 41°) = cot 25° + tan 41° (iii) sec 76° + cosec 52° = sec(90° - 14°) + cosec(90° - 52°) = cosec 14° + sec 38° (iv) cos 78° + sec 78° = cos (90° -78°) + sec(90° - 78°) = sin 12° + cosec 12° |
|
| 360. |
(tanθ+secθ-1)(tanθ+1+secθ)=2sinθ/1-sinθ |
|
Answer» L.H.S = (tan θ + sec θ -1)(tan θ + 1 +sec θ) = (tan θ + sec θ)2 - 1 = tan2 θ + sec2 θ + 2 tan θ sec θ - 1 = 2 tan2 θ + 2 tan θ sec θ [ sec2 θ - 1 = tan2 θ ] = 2 tan θ ( tan θ + sec θ) = 2 sin θ / cos θ ( (sin θ / cos θ) + (1/ cos θ) ) [tan θ = sin θ / cos θ , sec θ = 1/cos θ ] = 2 sin θ / cos θ ( (1 + sin θ)/ cos θ) = 2 sin θ (1 + sin θ)/ cos2 θ = 2 sin θ (1 + sin θ)/ ( 1- sin2 θ) [ cos2 θ = 1 - sin2 θ] = 2 sin θ (1 + sin θ)/(1 - sin θ) (1 + sin θ) = 2 sin θ / (1 - sin θ) = R.H.S L.H.S = R.H.S |
|
| 361. |
sin6 A + cos6 A + 3sin2A cos2A =A) 1 B) -1 C) 0 D) None |
|
Answer» Correct option is: A) 1 \(Sin^6 A + cos^6 A + 3\, sin^2 A \, cos^2 A\) = \((Sin^2A + cos^2A)^3 - 3\, sin^2 A \, cos^2 A (Sin^2 A + cos^2 A) + 3\, sin^2A \, cos^2A\) (\(\because\) \(a^6 + b^6 = (a^2 + b^2 )^3 - 3 \, a^2 b^2 (a^2+b^2)\)) = \(1^3 - 3\, sin^2A \, cos^2A + 3\, sin^2A\, cos^2A\) (\(\because\) \(sin^2A + cos^2A = 1\)) = 1 Correct option is: A) 1 |
|
| 362. |
Prove the following : sin6 A + cos6 A = 1 – 3 sin2 A + 3sin4 A |
|
Answer» L.H.S. = sin6 A + cos6 A = (sin2 A)3 + (cos2 A)3 = (sin2 A + cos2 A)3 – 3sin2 A cos2 A(sin2 A + cos2 A) …[ a3 + b3 = (a + b)3 – 3ab(a + b)] = 13 – 3sin2 A cos2 A (1) = 1 – 3sin2 A cos2 A = 1 – 3 sin2 A (1 – sin2 A) = 1 – 3 sin2 A + 3sin4 A = R.H.S. |
|
| 363. |
Find the value of 3sin10° – 4 sin310° |
|
Answer» 3sin10° – 4sin310° is of the form 3 sin A – 4sin3A = sin3A = sin 3- 10° = sin 30° = \(\frac{1}{2}\) |
|
| 364. |
Which is greater? sin (1856°) or sin (2006°) |
|
Answer» 1856° = 5 x 360° + 56° ∴ 1856° and 56° are co-terminal angles. Since 0° < 56° < 90°, 56° lies in the 1st quadrant. ∴ 1856° lies in the 1st quadrant, ∴ sin 1856° >0 …(i) 2006° = 5 x 360° + 206° ∴ 2006° and 206° are co-terminal angles. Since 180° < 206° < 270°, 206° lies in the 3rd quadrant. ∴ 2006° lies in the 3rd quadrant, ∴ sin 2006° <0 …(ii) From (i) and (ii), sin 1856° is greater. |
|
| 365. |
Prove the following :sin8 θ – cos8 θ = (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2 θ) |
|
Answer» L.H.S. = sin8 θ – cos8 θ = (sin4 θ)2 – (cos4 θ)2 = (sin4 θ – cos4 θ) (sin4 θ + cos4 θ) = [(sin2 θ)2 – (cos2 θ)2 ] . [(sin2 θ)2 + (cos2 θ)2 ] = (sin2 θ + cos2 θ) (sin2 θ – cos2 θ). [(sin2 θ + cos2 θ)2 – 2sin2 θ.cos2 θ] …[Y a2 + b2 = (a + b)2 – 2ab] = (1) (sin2 θ – cos2 θ) (12 – 2sin2 θ cos2 θ) = (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2 θ) = R.H.S. |
|
| 366. |
Which of the following is positive? sin(-310°) or sin(310°) |
|
Answer» Since 270° <310° <360°, 310° lies in the 4th quadrant. ∴ sin (310°) < 0 -310° = -360°+ 50° ∴ 50° and – 310° are co-terminal angles. Since 0° < 50° < 90°, 50° lies in the 1st quadrant ∴ – 310° lies in the 1st quadrant. ∴ sin (- 310°) > 0 ∴ sin (- 310°) is positive. |
|
| 367. |
Show that 1 – 2sin θ cos θ ≥ 0 for all θ ∈ R. |
|
Answer» 1 – 2 sin θ cos θ = sin2 θ + cos2 θ – 2sin θ cos θ = (sin θ – cos θ)2 ≥ 0 for all θ ∈ R |
|
| 368. |
Prove the following : (sinθ + cosecθ)2 + (cos θ + see θ)2 = tan2 θ + cot2 θ + 7 |
|
Answer» L.H.S. = (sinθ + cosecθ)2 + (cos θ + see θ)2 = sin2 θ + cosec2 θ + 2sinθ cosec θ + cos2 θ + sec2 θ + 2sec0 cos0 = (sin2 θ + cos2 θ) + cosec2 θ + 2 + sec2 θ + 2 = 1 + (1 + cot2 θ) + 2 + (1 + tan2 θ) + 2 = tan2 θ + cot2 θ + 7 = R.H.S |
|
| 369. |
If cos B = 3/5 and (A + B) = 90°, find the value of sin A. |
|
Answer» We have cosB = 3/5 ⇒ cos(90° − A) = 3/5 (As, A + B = 90° ) ∴ sinA= 3/5 |
|
| 370. |
If cot A = 4/3 and (A + B) = 90°,what is the value of tan B? |
|
Answer» We have cotA = 4/3 ⇒ cot(90° − B) = 4/3 (As, A + B = 90° ) ∴ tanB = 4/3 |
|
| 371. |
If 3 tan θ = 4, find the value of \(\frac{4 cos\, θ\, -\, sin\, θ}{2 cos\, θ\, +\, sin\, θ}\). |
|
Answer» Given, 3 tan θ = 4 ⇒ tan θ = \(\frac{4}{3}\) \(\frac{4 cos\, θ\, -\, sin\, θ}{2 cos\, θ\, +\, sin\, θ}\) From, let’s divide the numerator and denominator by cos θ. We get, \(\frac{(4\, –\, tan\, θ)}{(2\, +\, tan\, θ)}\) ⇒ \(\frac{(4 – (4/3))}{(2 + (4/3))}\) [using the value of tan θ] ⇒ \(\frac{(12 – 4)}{(6 + 4)}\) [After taking LCM and cancelling it] ⇒ \(\frac{8}{10}\) = \(\frac{4}{5}\) \(\frac{4 cos\, θ\, -\, sin\, θ}{2 cos\, θ\, +\, sin\, θ}\) = \(\frac{4}{5}\) |
|
| 372. |
Prove that (cos2θ/sinθ)-cosecθ+sinθ=0Prove that (cos2 theta/sin theta)-cosec theta+sin theta=0 |
|
Answer» LHS= (cos2θ-sinθcosecθ+sin2θ)/sinθ = (cos2θ+sin2θ-1)/sinθ [Therefore sinθcosecθ=1] =0 =LHS =RHS Hence proved |
|
| 373. |
If 3 cot θ = 2, find the value of \(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\). |
|
Answer» Given, 3 cot θ = 2 ⇒ cot θ = \(\frac{2}{3}\) \(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\) From, let’s divide the numerator and denominator by sin θ. We get, \(\frac{(4 –3 cot θ) }{(2 + 6 cot θ)}\) ⇒ \(\frac{(4 – 3(2/3)) }{(2 + 6(2/3))}\) [using the value of tan θ] ⇒ \(\frac{(4 – 2)}{(2 + 4)}\) [After taking LCM and simplifying it] ⇒\(\frac{2}{6}\) = \(\frac{1}{3}\) \(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\) = \(\frac{1}{3}\). |
|
| 374. |
If tan θ = \(\frac{a}{b}\), prove that \(\frac {a sin\, θ - b cos\, θ}{a sin\, θ + b cos\, θ}\) = \(\frac{a^2 - b^2}{a^2 + b^2}\). |
|
Answer» Given, tan θ = \(\frac{a}{b}\) \(\frac {a sin\, θ - b cos\, θ}{a sin\, θ + b cos\, θ}\) From LHS, let’s divide the numerator and denominator by cos θ. And we get, \(\frac{(a\, tan\, θ\, –\, b)}{(a\, tan\, θ\, +\, b\,) }\) ⇒ \(\frac{(a(a/b) – b)}{(a(a/b) + b)}\) [using the value of tan θ] ⇒ \(\frac{(a^2 – b^2)}{b^2} \over \frac{(a^2 + b^2)}{b^2}\) [After taking LCM and simplifying it] ⇒ \(\frac{(a^2 – b^2)}{(a^2 + b^2)}\) = RHS Hence Proved |
|
| 375. |
Tan θ + Cot θ = 2, then Tan2 θ + Cot2 θ =A) 4 B) 2 C) 6 D) 1 |
|
Answer» Correct option is: B) 2 We have Tan \(\theta\) + Cot \(\theta\) = 2 = \((tan \, \theta + cot \, \theta)^2 = 2^2 = 4\) = \(tan^2\theta + cot^2\theta + 2 \,tan \, \theta \, cot \, \theta = 4 \) (\(\because\) \((a+b)^2 = a^2+b^2 + 2ab\)) = \(tan^2\theta + cot^2\theta + 2 = 4\) (\(\because\) cot \(\theta\) \(\frac 1{tan \, \theta} =\) tan \(\theta\) cot \(\theta\) =1) = \(tan^2\theta + cot^2\theta = 4-2 =2\) Correct option is: B) 2 |
|
| 376. |
Sin θ . Cot θ . Sec θ = A) 2 B) -1 C) 1 D) 0 |
|
Answer» Correct option is: C) 1 Sin \(\theta\) . Cot \(\theta\) . Sec \(\theta\) = Sin \(\theta\) . \(\frac {cos\, \theta}{sin \, \theta}. \frac 1 {cos \, \theta }\) (\(\because\) cot \(\theta\) = \(\frac {cos\, \theta}{sin\, \theta}\) & sec \(\theta\) = \(\frac 1 {cos \, \theta }\)) = 1 Correct option is: C) 1 |
|
| 377. |
What is the maximum value of \(\frac{1}{cosecθ}\)? |
|
Answer» As we know, \(\frac{1}{cosecθ}\) = sinθ And, Maximum value of sinθ = 1 so, The maximum value of \(\frac{1}{cosecθ}\) is 1. |
|
| 378. |
If (cosθ + secθ) = 5/2 then(cos2θ + sec2θ) = ?(a) 21/4 (b) 17/4 (c) 29/4 (d) 33/4 |
|
Answer» Correct answer is (b) 17/4 We have (cos θ + sec θ) = 5/2 Squaring both sides, we get: (Cos θ + sec θ)2 = (5/2)2 ⇒ cos2 θ + sec2 θ + 2θ = 25/4 ⇒ cos2 θ + sec2 θ + 2 = 25/4 [∵ sec θ = 1/cos θ] ⇒ cos2 θ + sec2 θ = 25/4 − 2 = 17/4 |
|
| 379. |
The value of (sin30° + cos30°) – (sin60° + cos60°) is(A) – 1 (B) 0 (C) 1 (D) 2 |
|
Answer» Correct answer is (B) 0 |
|
| 380. |
The general solution of tan 5θ = cot 2θ is(a) θ = \(\frac{nπ}{7}\) + \(\frac{π}{14}\)(b) θ = \(\frac{nπ}{7}\) + \(\frac{π}{5}\)(c) θ = \(\frac{nπ}{7}\) + \(\frac{π}{3}\)(d) θ = \(\frac{nπ}{7}\) + \(\frac{π}{2}\) |
|
Answer» Answer : (a) θ = \(\frac{nπ}{7}\) + \(\frac{π}{14}\) tan 5θ = cot 2θ ⇒ tan 5θ = tan (π/2 – 2θ) ⇒ 5θ = nπ + (π/2 – 2θ), n∈I ⇒ 7θ = nπ + π/2, n∈I ⇒ θ = \(\frac{nπ}{7}\) + \(\frac{π}{14}\) , n∈I. |
|
| 381. |
Evaluate:cos 48°- sin 42° |
|
Answer» We know that, cos (90° − θ) = sin θ. So, cos 48° – sin 42° = cos (90° − 42°) – sin 42° = sin 42° – sin 42° = 0 Thus the value of cos 48° – sin 42° is 0. |
|
| 382. |
A wheel is spinning at 2 radians/second. How many seconds will it take to make 10 complete rotations? (a) 10π seconds (b) 20π seconds(c) 5π seconds (d) 15π seconds |
|
Answer» (a) 10π seconds 1 rotation makes 2π Distance travelled in 1 second = 2 radians So time taken to complete 10 rotations = 10 × 2π = 20 πc = 20π/2 = 10π seconds |
|
| 383. |
In a ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C. |
|
Answer» LHS = a cos A+ 6 cos B + c cos C Using sine formula, we get k sin A cos A + k sin B cos B + k sin C cos C k = (k/2) [2 sin A cos A + 2 sin B cos B + 2 sin C cos C] = (k/2) [sin 2A + sin 2B + sin 2C] = (k/2) [2 sin (A + B) . cos (A – B) + 2 sin C . cos C] = (k/2) [2 sin (A – B) . cos (A – B) + 2 sin C . cos C] = (k/2) [2 sin C . cos (A – B) + 2 sin C . cos C] = k sin C [cos(A – B) + cos C] = k sin C[cos(A - B) + cos(π - bar(A + B)) = k sin C [cos (A – B) – cos (A + B)] = k sin C . 2 sin A sin B = 2k sin A . sin B sin C = 2a sin B sin C = RHS |
|
| 384. |
Sec θ + Tan θ = p then Sin θ =A) p2−1/p2+1B) p/p2+1C) p2−1/pD) p2+1/p2−1 |
|
Answer» Correct option is: A) \(\frac{p^2-1}{p^2+1}\) We have sec \(\theta\) + tan \(\theta\) = P ....(1) On multiplying both sides of equation (1) by(sec \(\theta\) - tan \(\theta\) ), we get (sec \(\theta\) + tan \(\theta\) ) (sec \(\theta\) - tan \(\theta\) ) = P ( sec \(\theta\) - tan \(\theta\) ) = P ( sec \(\theta\) - tan \(\theta\)) = \(\sec^2\, \theta - tan^2 \, \theta = 1\) (\(\because\) \(\sec^2\, \theta - tan^2 \, \theta = 1\)) = sec \(\theta\) - tan \(\theta\) = \(\frac 1P\) ....(2) By adding equations (1) & (2), we get (sec \(\theta\) + tan \(\theta\)) + ( sec \(\theta\) - tan \(\theta\)) = P + \(\frac 1P\) = 2 sec \(\theta\) = \(\frac {P^2+1}{P}\) = sec \(\theta\) = \(\frac {P^2+1}{2P}\) ....(3) By subtracting equation (2) from equation (1), we get (sec \(\theta\) + tan \(\theta\)) - ( sec \(\theta\) - tan \(\theta\)) = P - \(\frac 1P\) = 2 tan \(\theta\) = \(\frac {P^2-1}{P}\) = tan \(\theta\) = \(\frac {P^2-1}{2P}\) ....(4) Now, sin \(\theta\) = \(\frac {\frac {sin\, \theta}{cos\, \theta}}{\frac 1{cos\, \theta}} = \frac {tan\, \theta}{sec\, \theta}= \frac {\frac {P^2-1}{2P}}{\frac {P^2+1}{2P}} = \frac {P^2-1}{P^2+1}\) (From (3) & (4) Correct option is: A) \(\frac{p^2-1}{p^2+1}\) |
|
| 385. |
`(sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta)`=_____________.A. `(2)/(1-2sin^(2)theta)`B. `(2)/(2sin^(2)theta-1)`C. Both (a) and (b)D. None of these |
|
Answer» Correct Answer - B Simplify the expression. |
|
| 386. |
`sin^(2)20^(@)+cos^(2)160^(@)-tan^(2)45^(@)`=__________A. 2B. 0C. 1D. -2 |
|
Answer» Correct Answer - D `sin(180-theta)=sintheta`. |
|
| 387. |
Which of the following is not possible?A. `sintheta=(3)/(5)`B. `sectheta=100`C. `cosectheta=0.14`D. None of these |
|
Answer» Correct Answer - B Recall the range of `sintheta and costheta`. |
|
| 388. |
The value of log `sin0^(@)+log sin1^(@)+log sin2^(@)+* * *+log sin 90^(@)`is ________. |
|
Answer» Correct Answer - D `log a+logb+logc +* * * =log(a*b*c* * *)`. |
|
| 389. |
If sec θ = √2 and \(\frac{3π}{2}\) < θ < 2π , find the value of \(\frac{\text{1 tan θ + cosec θ }}{\text{1 cot θ – cosec θ}}.\) |
|
Answer» sec θ = √2 ⇒ cos θ = \(\frac1{\sqrt2}\) ∴ sin θ = ±\(\sqrt{1-cos^2\theta}\) = ±\(\sqrt{1-\frac12}\) = ±\(\frac1{\sqrt2}\) Since θ lies in the fourth quadrant, so sin θ is –ve and cos q is +ve. ∴ sin θ = \(-\frac1{\sqrt2}\), cosec θ = √2 tan θ = \(\frac{sin\,\theta}{cos\,\theta}\) = \(-\frac1{\sqrt2}\) x \(\frac{\sqrt2}{1}\) = –1 ⇒ cot θ = –1 ∴ \(\frac{1+tan\,\theta+cosec\,\theta}{1+cot\,\theta-cosec\,\theta}\) = \(\frac{1-1-\sqrt2}{1-1+\sqrt2}= -1.\) |
|
| 390. |
Choose the correct option and justify your choice :sin 2A = 2 sin A is true when A ; (A) 0° (B) 30° (C) 45° (D) 60° |
|
Answer» Answer is (A) LHS = sin 2A = sin0° = 0 RHS = 2sin A = 2sin0° = 0 |
|
| 391. |
Prove the following identities :tan4θ + tan2θ = sec4θ – sec2θ |
|
Answer» Taking LHS = tan4 θ + tan2 θ = (tan2 θ)2 + tan2 θ = ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ] = sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)] = sec4 θ – sec2 θ = RHS Hence Proved |
|
| 392. |
If cos 9α = sinα and 9α < 90° , then the value of tan5α is(A) 1/√3 (B) √3 (C) 1 (D) 0 |
|
Answer» (C) 1 According to the question, cos 9∝ = sin ∝ and 9∝<90° i.e. 9α is an acute angle We know that, sin(90°-θ) = cos θ So, cos 9∝ = sin (90°-∝) Since, cos 9∝ = sin(90°-9∝) and sin(90°-∝) = sin∝ Thus, sin (90°-9∝) = sin∝ 90°-9∝ =∝ 10∝ = 90° ∝ = 9° Substituting ∝ = 9° in tan 5∝, we get, tan 5∝ = tan (5×9) = tan 45° = 1 ∴, tan 5∝ = 1 |
|
| 393. |
The ratio of the length of a rod and its shadow is 1 : √3. The angle of elevation of the sum is A. 30° B. 45° C. 60° D. 90° |
|
Answer» The ratio of the length of rod and its shadow = 1: √3 Let the angle of elevation of sun be θ tan θ = \(\frac{P}{B}\) (P = perpendicular, B = base) Here tan θ = 1: √3 = \(\frac{1}{\sqrt3}\) tan θ = \(\frac{\sqrt3}{3}\) (by rationalizing the denominator) θ = 30° (∵ tan 30° = (\(\frac{\sqrt3}{3}\)) |
|
| 394. |
If cos A + cos2 A = 1 then sin2 A + sin4 A = ?(a) 1 (b) 2 (c) 4 (d) 3 |
|
Answer» Correct answer is (a) 1 cos A + cos2 A = 1 => cos A = 1 − cos2 A => cos A = sin2 A (∵ 1 − cos2 A = sin2) => cos2 A = sin4 A (Squaring both sides) => 1 − sin2 A = sin4 A => sin4 A + sin2 A = 1 |
|
| 395. |
Prove the following identities :cos4 A + sin4 A + 2 sin2 A. cos2 A = 1 |
|
Answer» Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A Using the identity,(a + b)2 = (a2 + b2 + 2ab) Here, a = cos2 A and b = sin2 A = ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1] = 1 |
|
| 396. |
If sin A+sin2 A=1, then the value of (cos2 A +cos4 A) isA. 1B. 1/2C. 2D. 3 |
|
Answer» A. 1 Given: sin A + sin2 A = 1 ⇒ sin A = 1 – sin2 A (By Rearranging) ⇒ sin A = cos2 A (∵, sin2 θ +cos2 θ = 1) ⇒ cos2 θ = 1 – sin2 θ) Squaring both sides, we get ⇒ sin2 A = cos4 A or cos4 A = sin2 A Thus, cos2 A + cos4 A = sin A + sin2 A = 1 (∵ sin A+sin2 A = 1) ∴ cos2 A + cos4 A = 1 |
|
| 397. |
If sin A + sin2 A = then cos2 A + cos4 A = ?(a) 1/2 (b) 1 (c) 2 (d) 3 |
|
Answer» Correct answer is (b) 1 Sin A + sin2 A = 1 => sin A = 1 − sin2 A => sin A = cos2 A (∵ 1 − sin2 A) => sin2 A = cos4 A (Squaring both sides) => 1 − cos2 A = cos4 A => cos4 A + cos2 A = 1 |
|
| 398. |
If cosec θ + cot θ = 2, then cos θ =A) 3/5B) 4/5C) 5/3D) 6/5 |
|
Answer» Correct option is: A) \( \frac{3}{5}\) We have cosec \(\theta\) + cot \(\theta\) = 2 = \(\frac {1}{sin \theta} + \frac {cos \theta}{sin \theta} =2\) = 1 + cos \(\theta\) = 2 sin \(\theta\) = \((1 + cos \theta )^2 = 4\, sin^2\theta\) (By squaring both sides) = 1 + \(cos^2\theta + 2\, cos \theta = 4 (1- cos^2\theta)\) (\(\because\) \(sin^2\theta = 1- cos^2\theta\)) = \(5 \,cos ^2\theta + 2\, cos \theta - 3 = 0\) = \(5 \,cos ^2\theta + 5 \,cos\theta - 3 \, cos\theta - 3 = 0\) = \(5 \,cos\theta (cos\theta +1) - 3 (cos\theta +1 ) = 0\) = (5 cos \(\theta\) - 3 ) (cos \(\theta\) + 1) = 0 = 5 cos \(\theta\) - 3 = 0 or cos \(\theta\) + 1 = 0 = cos \(\theta\) = \(\frac 35\) or cos \(\theta\) = -1 cos \(\theta\) \(\neq\) -1 \(\because\) If cos \(\theta\) = -1 then sin \(\theta\) = \(\sqrt {1-cos^2\theta} = \sqrt {1-(-1)^2} = \sqrt {1-1} = 0\) Then cosec \(\theta\) = \(\frac 1{sin \theta} = \frac 10 = \infty\) (Not defined) \(\therefore\) cos \(\theta\) = \(\frac 35\) Correct option is: A) \(\frac{3}{5}\) |
|
| 399. |
If 4 cos2 θ – 3 = 0, then sin θ =………A) 1/2B) -1/2C) 1/√2D) √3/2 |
|
Answer» Correct option is: A) \(\frac{1}{2}\) Given that \(4\, cos^2\theta -3 = 0\) \(\therefore\) \(cos^2\theta = \frac 34\) \(1- sin^2\theta = \frac 34\) (\(\because\) \(cos^2\theta = 1-sin^2\theta)\) \(Sin^2\theta = 1 - \frac 34 = \frac 14\) sin \(\theta\) = \(\pm \frac 12\) sin \(\theta\) = \(\frac 12\) or sin \(\theta\) = \(\frac {-1}2\) Correct option is: A) \(\frac{1}{2}\) |
|
| 400. |
Complete the following activity by filling the boxes `sin^(2) theta+cos^(2) theta=square`……….(Identity) Dividing each term by `cos^(2)theta` `(sin^(2)theta)/(cos^(2)theta)+(cos^(2)theta)/(cos^(2)theta)=(square)/(cos^(2)theta)` `:.square+1=square` |
|
Answer» Activity: `sin^(2) theta+cos^(2) theta=1` ..........(Identity) Dividing each term by `cos^(2) theta` `(sin^(2) theta)/(cos^(2)theta)+(cos^(2)theta)/(cos^(2)theta)=1/(cos^(2)theta)` `:.tan^(2)theta+1=sec^(2)theta` |
|