Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

Find the value of `sin 2 alpha, if sin alpha+ cos alpha=(1)/(3)`.

Answer» Correct Answer - `-(1)/(x)`
352.

A wheel makes 200 revolution in 2 minutes. Find the measure of the angle it describes at the centre in 24 seconds.

Answer» Correct Answer - `80pi^(c )`
353.

If `sin alpha=(4)/(5)`, then find the value of `sin 2 alpha `.

Answer» Correct Answer - `(24)/(25)`
354.

Find the length of the chord subtending an angle of `120^(@)` at the centre of the circle whose radius is 4 cm.

Answer» Correct Answer - `4sqrt(3)` cm
355.

Express `sin theta ` in terms of ` cot theta`.

Answer» Correct Answer - `sqrt((1)/(1+cot^(2) theta))`
356.

Find the value of `tan75^(@)`

Answer» Correct Answer - `(sqrt(3)+1)/(sqrt(3)-1)`
357.

If `cos alpha=(12)/(13) and sin beta=(4)/(5)`, then find `sin(alpha+beta)`.

Answer» Correct Answer - `(63)/(65)`
358.

If `sec^(2)alpha+cos^(2)alpha=2`, then find the value of `sec alpha+ cos alpha`.

Answer» Correct Answer - `pm2`
359.

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°(i) sin 59° + cos 56°(ii) tan 65° + cot 49°(iii) sec 76° + cosec 52°(iv) cost 78° + sec 78°

Answer»

 sin(90° - θ) = cos θ

cos (90° - θ) = sinθ

tan (90° - θ) = cotθ

cot (90° - θ) = tanθ

sec(90° - θ) = cosecθ

cosec(90° - θ) = secθ

(i) sin 59° + cos 56°

= sin (90° - 31°) + cos (90° - 34°)

= cos 31° + sin 34°

(ii) tan 65° + cot 49°

= tan (90° - 25°) + cot (90° - 41°)

= cot 25° + tan 41°

(iii) sec 76° + cosec 52°

= sec(90° - 14°) + cosec(90° - 52°)

= cosec 14° + sec 38°

(iv) cos 78° + sec 78°

= cos (90° -78°) + sec(90° - 78°)

 = sin 12° + cosec 12°

360.

(tanθ+secθ-1)(tanθ+1+secθ)=2sinθ/1-sinθ

Answer»

L.H.S

= (tan θ + sec θ -1)(tan θ + 1 +sec θ)

= (tan θ + sec θ)2 - 1

= tan2 θ + sec2 θ + 2 tan θ sec θ - 1

= 2 tan2 θ + 2 tan θ sec θ         [ sec2 θ  - 1 = tan2 θ ]

= 2 tan θ  ( tan θ + sec θ)

= 2 sin θ / cos θ  ( (sin θ / cos θ)  + (1/ cos θ) )    [tan θ = sin θ / cos θ , sec θ  = 1/cos θ ] 

= 2 sin θ / cos θ ( (1 + sin θ)/ cos θ)

= 2 sin θ (1 + sin θ)/ cos2 θ

= 2 sin θ (1 + sin θ)/ ( 1- sin2 θ)    [ cos2 θ = 1 - sin2 θ]

2 sin θ (1 + sin θ)/(1 - sin θ) (1 + sin θ)

= 2 sin θ / (1 - sin θ) = R.H.S

L.H.S = R.H.S

361.

sin6 A + cos6 A + 3sin2A cos2A =A) 1 B) -1 C) 0 D) None

Answer»

Correct option is: A) 1

\(Sin^6 A + cos^6 A + 3\, sin^2 A \, cos^2 A\)

\((Sin^2A + cos^2A)^3 - 3\, sin^2 A \, cos^2 A (Sin^2 A + cos^2 A) + 3\, sin^2A \, cos^2A\)

(\(\because\) \(a^6 + b^6 = (a^2 + b^2 )^3 - 3 \, a^2 b^2 (a^2+b^2)\))

\(1^3 - 3\, sin^2A \, cos^2A + 3\, sin^2A\, cos^2A\)

(\(\because\) \(sin^2A + cos^2A = 1\))

= 1

Correct option is: A) 1

362.

Prove the following : sin6 A + cos6 A = 1 – 3 sin2 A + 3sin4 A

Answer»

L.H.S. = sin6 A + cos6

= (sin2 A)3 + (cos2 A)3 

= (sin2 A + cos2 A)3 – 3sin2 A cos2 A(sin2 A + cos2 A) 

…[ a3 + b3 = (a + b)3 – 3ab(a + b)] 

= 13 – 3sin2 A cos2 A (1) 

= 1 – 3sin2 A cos2

= 1 – 3 sin2 A (1 – sin2 A) 

= 1 – 3 sin2 A + 3sin4 A 

= R.H.S.

363.

Find the value of 3sin10° – 4 sin310°

Answer»

3sin10° – 4sin310° is of the form 3 sin A – 4sin3

= sin3A = sin 3- 10° 

= sin 30° 

\(\frac{1}{2}\)

364.

Which is greater? sin (1856°) or sin (2006°)

Answer»

1856° = 5 x 360° + 56° 

∴ 1856° and 56° are co-terminal angles. 

Since 0° < 56° < 90°, 56° lies in the 1st quadrant. 

∴ 1856° lies in the 1st quadrant, 

∴ sin 1856° >0 …(i) 

2006° = 5 x 360° + 206° 

∴ 2006° and 206° are co-terminal angles. 

Since 180° < 206° < 270°, 206° lies in the 3rd quadrant. 

∴ 2006° lies in the 3rd quadrant, 

∴ sin 2006° <0 …(ii) 

From (i) and (ii), 

sin 1856° is greater.

365.

Prove the following :sin8 θ – cos8 θ = (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2 θ)

Answer»

L.H.S. = sin8 θ – cos8 θ 

= (sin4 θ)2 – (cos4 θ)2 

= (sin4 θ – cos4 θ) (sin4 θ + cos4 θ) 

= [(sin2 θ)2 – (cos2 θ)2

. [(sin2 θ)2 + (cos2 θ)2

= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ). [(sin2 θ + cos2 θ)2 – 2sin2 θ.cos2 θ] 

…[Y a2 + b2 = (a + b)2 – 2ab] 

= (1) (sin2 θ – cos2 θ) (12 – 2sin2 θ cos2 θ) 

= (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2 θ) 

= R.H.S.

366.

Which of the following is positive? sin(-310°) or sin(310°)

Answer»

Since 270° <310° <360°, 

310° lies in the 4th quadrant. 

∴ sin (310°) < 0 

-310° = -360°+ 50° 

∴ 50° and – 310° are co-terminal angles. 

Since 0° < 50° < 90°, 50° lies in the 1st quadrant

∴ – 310° lies in the 1st quadrant. 

∴ sin (- 310°) > 0 

∴ sin (- 310°) is positive.

367.

Show that 1 – 2sin θ cos θ ≥ 0 for all θ ∈ R.

Answer»

1 – 2 sin θ cos θ 

= sin2 θ + cos2 θ – 2sin θ cos θ 

= (sin θ – cos θ)2 ≥ 0 for all θ ∈ R

368.

Prove the following : (sinθ + cosecθ)2 + (cos θ + see θ)2 = tan2 θ + cot2 θ + 7

Answer»

L.H.S. = (sinθ + cosecθ)2 + (cos θ + see θ)2 

= sin2 θ + cosec2 θ + 2sinθ cosec θ + cos2 θ + sec2 θ + 2sec0 cos0 

= (sin2 θ + cos2 θ) + cosec2 θ + 2 + sec2 θ + 2 

= 1 + (1 + cot2 θ) + 2 + (1 + tan2 θ) + 2 = tan2 θ + cot2 θ + 7 

= R.H.S

369.

If cos B = 3/5 and (A + B) = 90°, find the value of sin A.

Answer»

We have

cosB = 3/5 

⇒ cos(90° − A) = 3/5 

(As, A + B = 90° ) 

∴ sinA= 3/5

370.

If cot A = 4/3 and (A + B) = 90°,what is the value of tan B?

Answer»

We have

cotA = 4/3 

⇒ cot(90° − B) = 4/3  (As, A + B = 90° ) 

∴ tanB = 4/3

371.

If 3 tan θ = 4, find the value of \(\frac{4 cos\, θ\, -\, sin\, θ}{2 cos\, θ\, +\, sin\, θ}\).

Answer»

Given, 

3 tan θ = 4 

⇒ tan θ = \(\frac{4}{3}\)

\(\frac{4 cos\, θ\, -\, sin\, θ}{2 cos\, θ\, +\, sin\, θ}\)

From, let’s divide the numerator and denominator by cos θ. We get,

\(\frac{(4\, –\, tan\, θ)}{(2\, +\, tan\, θ)}\) 

\(\frac{(4 – (4/3))}{(2 + (4/3))}\) [using the value of tan θ] 

\(\frac{(12 – 4)}{(6 + 4)}\) [After taking LCM and cancelling it] 

\(\frac{8}{10}\)

= \(\frac{4}{5}\)

\(\frac{4 cos\, θ\, -\, sin\, θ}{2 cos\, θ\, +\, sin\, θ}\) = \(\frac{4}{5}\)

372.

Prove that (cos2θ/sinθ)-cosecθ+sinθ=0Prove that (cos2 theta/sin theta)-cosec theta+sin theta=0

Answer»

LHS= (cos2θ-sinθcosecθ+sin2θ)/sinθ

= (cos2θ+sin2θ-1)/sinθ  [Therefore sinθcosecθ=1]

=0

=LHS =RHS Hence proved

373.

If 3 cot θ = 2, find the value of \(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\).

Answer»

Given, 

3 cot θ = 2 

⇒ cot θ = \(\frac{2}{3}\)

\(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\)

From, let’s divide the numerator and denominator by sin θ. We get,

\(\frac{(4 –3 cot θ) }{(2 + 6 cot θ)}\)

\(\frac{(4 – 3(2/3)) }{(2 + 6(2/3))}\) [using the value of tan θ] 

\(\frac{(4 – 2)}{(2 + 4)}\) [After taking LCM and simplifying it] 

\(\frac{2}{6}\) 

= \(\frac{1}{3}\)

\(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\) = \(\frac{1}{3}\).

374.

If tan θ = \(\frac{a}{b}\), prove that \(\frac {a sin\, θ - b cos\, θ}{a sin\, θ + b cos\, θ}\) = \(\frac{a^2 - b^2}{a^2 + b^2}\).

Answer»

Given, tan θ = \(\frac{a}{b}\)

\(\frac {a sin\, θ - b cos\, θ}{a sin\, θ + b cos\, θ}\)

From LHS, let’s divide the numerator and denominator by cos θ. 

And we get, 

\(\frac{(a\, tan\, θ\, –\, b)}{(a\, tan\, θ\, +\, b\,) }\)

\(\frac{(a(a/b) – b)}{(a(a/b) + b)}\) [using the value of tan θ] 

\(\frac{(a^2 – b^2)}{b^2} \over \frac{(a^2 + b^2)}{b^2}\) [After taking LCM and simplifying it] 

\(\frac{(a^2 – b^2)}{(a^2 + b^2)}\) = RHS

Hence Proved

375.

Tan θ + Cot θ = 2, then Tan2 θ + Cot2 θ =A) 4 B) 2 C) 6 D) 1

Answer»

Correct option is: B) 2

We have Tan \(\theta\) + Cot \(\theta\) = 2

\((tan \, \theta + cot \, \theta)^2 = 2^2 = 4\)

\(tan^2\theta + cot^2\theta + 2 \,tan \, \theta \, cot \, \theta = 4 \) (\(\because\) \((a+b)^2 = a^2+b^2 + 2ab\))

\(tan^2\theta + cot^2\theta + 2 = 4\) (\(\because\) cot \(\theta\)  \(\frac 1{tan \, \theta} =\) tan \(\theta\) cot \(\theta\) =1)

\(tan^2\theta + cot^2\theta = 4-2 =2\)

Correct option is: B) 2

376.

Sin θ . Cot θ . Sec θ = A) 2 B) -1 C) 1 D) 0

Answer»

Correct option is: C) 1

Sin \(\theta\) . Cot \(\theta\) . Sec \(\theta\) = Sin \(\theta\) . \(\frac {cos\, \theta}{sin \, \theta}. \frac 1 {cos \, \theta }\)

(\(\because\) cot \(\theta\) = \(\frac {cos\, \theta}{sin\, \theta}\) & sec \(\theta\) = \(\frac 1 {cos \, \theta }\))

= 1

Correct option is: C) 1

377.

What is the maximum value of \(\frac{1}{cosecθ}\)?

Answer»

As we know,

\(\frac{1}{cosecθ}\) = sinθ

And,

Maximum value of sinθ = 1

so,

The maximum value of \(\frac{1}{cosecθ}\) is 1.

378.

If (cosθ + secθ) = 5/2 then(cos2θ + sec2θ) = ?(a) 21/4 (b) 17/4 (c) 29/4 (d) 33/4

Answer»

Correct answer is (b) 17/4

We have (cos θ + sec θ) = 5/2 

Squaring both sides, we get: 

(Cos θ + sec θ)2 = (5/2)2 

⇒ cos2 θ + sec2 θ + 2θ = 25/4 

⇒ cos2 θ + sec2 θ + 2 = 25/4 [∵ sec θ = 1/cos θ] 

⇒ cos2 θ + sec2 θ = 25/4 − 2 = 17/4

379.

The value of (sin30° + cos30°) – (sin60° + cos60°) is(A) – 1 (B) 0 (C) 1 (D) 2

Answer»

Correct answer is (B) 0

380.

The general solution of tan 5θ = cot 2θ is(a) θ =  \(\frac{nπ}{7}\) + \(\frac{π}{14}\)(b)  θ =  \(\frac{nπ}{7}\) + \(\frac{π}{5}\)(c)  θ =  \(\frac{nπ}{7}\) + \(\frac{π}{3}\)(d)  θ =  \(\frac{nπ}{7}\) + \(\frac{π}{2}\)

Answer»

Answer : (a) θ = \(\frac{nπ}{7}\) + \(\frac{π}{14}\)

tan 5θ = cot 2θ 

⇒ tan 5θ = tan (π/2 – 2θ) 

⇒ 5θ = nπ + (π/2 – 2θ), n∈I 

⇒ 7θ = nπ + π/2, n∈I 

θ = \(\frac{nπ}{7}\)\(\frac{π}{14}\) , n∈I.

381.

Evaluate:cos 48°- sin 42°

Answer»

We know that, cos (90° − θ) = sin θ. 

So, 

cos 48° – sin 42°

= cos (90° − 42°) – sin 42°

= sin 42° – sin 42°

= 0 

Thus the value of cos 48° – sin 42° is 0.

382.

A wheel is spinning at 2 radians/second. How many seconds will it take to make 10 complete rotations? (a) 10π seconds (b) 20π seconds(c) 5π seconds (d) 15π seconds

Answer»

(a) 10π seconds

1 rotation makes 2π 

Distance travelled in 1 second = 2 radians 

So time taken to complete 10 rotations = 10 × 2π = 20 πc 

= 20π/2 = 10π seconds

383.

In a ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C.

Answer»

LHS = a cos A+ 6 cos B + c cos C 

Using sine formula, we get k sin A cos A + k sin B cos B + k sin C cos C k 

= (k/2) [2 sin A cos A + 2 sin B cos B + 2 sin C cos C] 

= (k/2) [sin 2A + sin 2B + sin 2C] 

= (k/2) [2 sin (A + B) . cos (A – B) + 2 sin C . cos C] 

= (k/2) [2 sin (A – B) . cos (A – B) + 2 sin C . cos C] 

= (k/2) [2 sin C . cos (A – B) + 2 sin C . cos C] 

= k sin C [cos(A – B) + cos C]

= k sin C[cos(A - B) + cos(π - bar(A + B))

= k sin C [cos (A – B) – cos (A + B)] 

= k sin C . 2 sin A sin B

= 2k sin A . sin B sin C 

= 2a sin B sin C = RHS

384.

Sec θ + Tan θ = p then Sin θ =A) p2−1/p2+1B) p/p2+1C) p2−1/pD) p2+1/p2−1

Answer»

 Correct option is: A) \(\frac{p^2-1}{p^2+1}\)

We have 

sec \(\theta\) + tan \(\theta\) = P ....(1)

On multiplying both sides of equation (1) by(sec \(\theta\) - tan \(\theta\) ), we get

(sec \(\theta\) + tan \(\theta\) ) (sec \(\theta\) - tan \(\theta\) ) = P ( sec \(\theta\) - tan \(\theta\) )

= P ( sec \(\theta\) - tan \(\theta\)) = \(\sec^2\, \theta - tan^2 \, \theta = 1\)  (\(\because\) \(\sec^2\, \theta - tan^2 \, \theta = 1\))

= sec \(\theta\) - tan \(\theta\) = \(\frac 1P\) ....(2)

By adding equations (1) & (2), we get

(sec \(\theta\) + tan \(\theta\)) + ( sec \(\theta\) - tan \(\theta\)) = P + \(\frac 1P\)

= 2 sec \(\theta\) = \(\frac {P^2+1}{P}\) 

= sec \(\theta\) = \(\frac {P^2+1}{2P}\) ....(3)

By subtracting equation (2) from equation (1), we get

(sec \(\theta\) + tan \(\theta\)) - ( sec \(\theta\) - tan \(\theta\)) = P - \(\frac 1P\)

= 2 tan \(\theta\) = \(\frac {P^2-1}{P}\) 

= tan \(\theta\) = \(\frac {P^2-1}{2P}\) ....(4)

Now, sin \(\theta\) = \(\frac {\frac {sin\, \theta}{cos\, \theta}}{\frac 1{cos\, \theta}} = \frac {tan\, \theta}{sec\, \theta}= \frac {\frac {P^2-1}{2P}}{\frac {P^2+1}{2P}} = \frac {P^2-1}{P^2+1}\)  (From (3) & (4)

Correct option is: A) \(\frac{p^2-1}{p^2+1}\)

385.

`(sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta)`=_____________.A. `(2)/(1-2sin^(2)theta)`B. `(2)/(2sin^(2)theta-1)`C. Both (a) and (b)D. None of these

Answer» Correct Answer - B
Simplify the expression.
386.

`sin^(2)20^(@)+cos^(2)160^(@)-tan^(2)45^(@)`=__________A. 2B. 0C. 1D. -2

Answer» Correct Answer - D
`sin(180-theta)=sintheta`.
387.

Which of the following is not possible?A. `sintheta=(3)/(5)`B. `sectheta=100`C. `cosectheta=0.14`D. None of these

Answer» Correct Answer - B
Recall the range of `sintheta and costheta`.
388.

The value of log `sin0^(@)+log sin1^(@)+log sin2^(@)+* * *+log sin 90^(@)`is ________.

Answer» Correct Answer - D
`log a+logb+logc +* * * =log(a*b*c* * *)`.
389.

If sec θ = √2 and \(\frac{3π}{2}\) &lt; θ &lt; 2π , find the value of \(\frac{\text{1 tan θ + cosec θ }}{\text{1 cot θ – cosec θ}}.\)

Answer»

sec θ = √2 ⇒ cos θ = \(\frac1{\sqrt2}\)

∴ sin θ = ±\(\sqrt{1-cos^2\theta}\) = ±\(\sqrt{1-\frac12}\) = ±\(\frac1{\sqrt2}\)

Since θ lies in the fourth quadrant, so sin θ is –ve and cos q is +ve.

∴ sin θ = \(-\frac1{\sqrt2}\), cosec θ = √2

tan θ = \(\frac{sin\,\theta}{cos\,\theta}\) = \(-\frac1{\sqrt2}\) x \(\frac{\sqrt2}{1}\) = –1 ⇒ cot θ = –1

∴ \(\frac{1+tan\,\theta+cosec\,\theta}{1+cot\,\theta-cosec\,\theta}\) = \(\frac{1-1-\sqrt2}{1-1+\sqrt2}= -1.\)

390.

Choose the correct option and justify your choice :sin 2A = 2 sin A is true when A ; (A) 0° (B) 30° (C) 45° (D) 60°

Answer»

Answer is (A)

LHS = sin 2A = sin0° = 0 

RHS = 2sin A = 2sin0° = 0

391.

Prove the following identities :tan4θ + tan2θ = sec4θ – sec2θ

Answer»

Taking LHS = tan4 θ + tan2 θ

= (tan2 θ)2 + tan2 θ

= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]

= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]

= sec4 θ – sec2 θ

= RHS

Hence Proved

392.

If cos 9α = sinα and 9α &lt; 90° , then the value of tan5α is(A) 1/√3 (B) √3 (C) 1 (D) 0

Answer»

(C) 1

According to the question,

cos 9∝ = sin ∝ and 9∝<90°

i.e. 9α is an acute angle

We know that,

sin(90°-θ) = cos θ

So,

cos 9∝ = sin (90°-∝)

Since, cos 9∝ = sin(90°-9∝) and sin(90°-∝) = sin∝

Thus, sin (90°-9∝) = sin∝

90°-9∝ =∝

10∝ = 90°

∝ = 9°

Substituting ∝ = 9° in tan 5∝, we get,

tan 5∝ = tan (5×9) = tan 45° = 1

∴, tan 5∝ = 1

393.

The ratio of the length of a rod and its shadow is 1 : √3. The angle of elevation of the sum is A. 30° B. 45° C. 60° D. 90°

Answer»

The ratio of the length of rod and its shadow = 1: √3 

Let the angle of elevation of sun be θ 

tan θ = \(\frac{P}{B}\) (P = perpendicular, B = base) 

Here tan θ = 1: √3 = \(\frac{1}{\sqrt3}\)

tan θ = \(\frac{\sqrt3}{3}\) (by rationalizing the denominator) 

θ = 30° (∵ tan 30° = (\(\frac{\sqrt3}{3}\))

394.

If cos A + cos2 A = 1 then sin2 A + sin4 A = ?(a) 1 (b) 2 (c) 4 (d) 3

Answer»

Correct answer is (a) 1

cos A + cos2 A = 1 

=> cos A = 1 − cos2

=> cos A = sin2 A (∵ 1 − cos2 A = sin2

=> cos2 A = sin4 A (Squaring both sides) 

=> 1 − sin2 A = sin4

=> sin4 A + sin2 A = 1

395.

Prove the following identities :cos4 A + sin4 A + 2 sin2 A. cos2 A = 1

Answer»

Taking LHS = cos4 A + sin4 A + 2 sin2 A cos2 A

Using the identity,(a + b)2 = (a2 + b2 + 2ab)

Here, a = cos2 A and b = sin2 A

= ( cos2 A + sin2 A) [∵ cos2 θ + sin2 θ = 1]

= 1

396.

If sin A+sin2 A=1, then the value of (cos2 A +cos4 A) isA. 1B. 1/2C. 2D. 3

Answer»

A. 1

Given: sin A + sin2 A = 1

⇒ sin A = 1 – sin2 A

(By Rearranging)

⇒ sin A = cos2 A

(∵, sin2 θ +cos2 θ = 1)

⇒ cos2 θ = 1 – sin2 θ)

Squaring both sides, we get

⇒ sin2 A = cos4 A or cos4 A = sin2 A

Thus, cos2 A + cos4 A = sin A + sin2 A = 1 (∵ sin A+sin2 A = 1)

∴ cos2 A + cos4 A = 1

397.

If sin A + sin2 A = then cos2 A + cos4 A = ?(a) 1/2 (b) 1 (c) 2 (d) 3

Answer»

Correct answer is (b) 1

Sin A + sin2 A = 1 

=> sin A = 1 − sin2

=> sin A = cos2 A (∵ 1 − sin2 A) 

=> sin2 A = cos4 A (Squaring both sides) 

=> 1 − cos2 A = cos4

=> cos4 A + cos2 A = 1

398.

If cosec θ + cot θ = 2, then cos θ =A) 3/5B) 4/5C) 5/3D) 6/5

Answer»

Correct option is: A) \( \frac{3}{5}\)

We have cosec \(\theta\) + cot \(\theta\) = 2

\(\frac {1}{sin \theta} + \frac {cos \theta}{sin \theta} =2\)

= 1 + cos \(\theta\) = 2 sin \(\theta\)

= \((1 + cos \theta )^2 = 4\, sin^2\theta\) (By squaring both sides)

= 1 + \(cos^2\theta + 2\, cos \theta = 4 (1- cos^2\theta)\) (\(\because\) \(sin^2\theta = 1- cos^2\theta\))

\(5 \,cos ^2\theta + 2\, cos \theta - 3 = 0\)

\(5 \,cos ^2\theta + 5 \,cos\theta - 3 \, cos\theta - 3 = 0\)

\(5 \,cos\theta (cos\theta +1) - 3 (cos\theta +1 ) = 0\)

= (5 cos \(\theta\) - 3 ) (cos \(\theta\) + 1) = 0

= 5 cos \(\theta\) - 3 = 0 or cos \(\theta\) + 1 = 0

= cos \(\theta\) = \(\frac 35\) or cos \(\theta\) = -1

cos \(\theta\) \(\neq\) -1

\(\because\) If cos \(\theta\) = -1 then sin \(\theta\) = \(\sqrt {1-cos^2\theta} = \sqrt {1-(-1)^2} = \sqrt {1-1} = 0\)

Then cosec \(\theta\) = \(\frac 1{sin \theta} = \frac 10 = \infty\) (Not defined)

\(\therefore\) cos \(\theta\) = \(\frac 35\)

Correct option is: A) \(\frac{3}{5}\)

399.

If 4 cos2 θ – 3 = 0, then sin θ =………A) 1/2B) -1/2C) 1/√2D) √3/2

Answer»

Correct option is: A) \(\frac{1}{2}\)

Given that \(4\, cos^2\theta -3 = 0\)

\(\therefore\) \(cos^2\theta = \frac 34\)

 \(1- sin^2\theta = \frac 34\) (\(\because\) \(cos^2\theta = 1-sin^2\theta)\)

\(Sin^2\theta = 1 - \frac 34 = \frac 14\) 

sin \(\theta\) = \(\pm \frac 12\)

sin \(\theta\)  = \(\frac 12\) or sin \(\theta\) = \(\frac {-1}2\)

Correct option is: A) \(\frac{1}{2}\)

400.

Complete the following activity by filling the boxes `sin^(2) theta+cos^(2) theta=square`……….(Identity) Dividing each term by `cos^(2)theta` `(sin^(2)theta)/(cos^(2)theta)+(cos^(2)theta)/(cos^(2)theta)=(square)/(cos^(2)theta)` `:.square+1=square`

Answer» Activity:
`sin^(2) theta+cos^(2) theta=1` ..........(Identity)
Dividing each term by `cos^(2) theta`
`(sin^(2) theta)/(cos^(2)theta)+(cos^(2)theta)/(cos^(2)theta)=1/(cos^(2)theta)`
`:.tan^(2)theta+1=sec^(2)theta`