InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 401. |
Prove that `sec theta+tan theta=(cos theta)/(1-sin theta)` |
|
Answer» Proof: `LHS=sec theta+tan theta` `=1/(cos theta)+(sin theta)/(cos theta)………[sec theta=1/(cos theta), tan theta=(sin theta)/(cos theta)]` `=(1+sin theta)/(cos theta)` `=((1+sin theta))/(cos theta)xx((1-sin theta))/((1- sin theta))`……….. (Multiplying the numerator and denominator by `1-sin theta`) `=((1)^(2)-sin^(2)theta)/(cos theta(1-sin theta))............[(a+b)(a-b)=a^(2)-b^(2)]` `=(cos^(2) theta)/(cos theta(1-sin theta)){:[(sin^(2)theta+cos^(2)theta=1),( :.cos^(2)theta=1-sin^(2)theta)]:}` `=(cos theta)/(1-sin theta)=RHS` `:. sec theta+tan theta=(cos theta)/(1-sin theta)` |
|
| 402. |
Prove `: cot^(2) theta-tan^(2)theta=cosec^(2)theta-sec^(2)theta` |
|
Answer» Proof: `LHS =cot^(2) theta-tan^(2)theta` `=(cosec^(2)theta-1)-(sec^(2)theta-1)…{:[(cosec^(2)theta=1+cot^(2)theta),(sec^(2)theta=1+tan^(2)theta)]:}` `=cosec^(2) theta-1-sec^(2)theta+1` `=cosec^(2) theta-sec^(2) theta` `=RHS` `:.cot^(2) theta-tan^(2)theta=cosec^(2)theta-sec^(2)theta`. |
|
| 403. |
If `tan theta=1`, then `(sin theta+cos theta)/(sec theta+cosec theta)=` |
|
Answer» `tan theta=1` From the table of trigonometric ratios, We know that `tan 45^(@)=1` `:.theta=45^(@)` `sin theta=sin 45^(@)=1/(sqrt(2))` `cos theta=cos45^(@)=1/(sqrt(2))` `sec theta =sec 45^(@)=sqrt(2)` `cosec theta=cosec 45^(@)=sqrt(2)` `(sin theta+cos theta)/(sec theta+cosec theta)=(sin 45^(@)+cos 45^(@))/(sec 45^(@)+cosec 45^(@))` `=(1/(sqrt(2))+1/(sqrt(2)))/(sqrt(2)+sqrt(2))` `=((2/(sqrt(2))))/(sqrt(2))` `=2/(sqrt(2))-:2sqrt(2)` `=2/(sqrt(2))xx1/(2sqrt(2))` `=1/2` `(sin theta+cos theta)/(sec theta+cosec theta)=1/2` |
|
| 404. |
Prove `cot theta+tan theta=(cosec theta)(sec theta)` by completing the following activity: LHS`=cot theta+tan theta` `=(cos theta)/(sin theta)+(square)/(cos theta)` `=(square +square)/(sin thetaxx co cos theta)` `=(square)/(sin thetaxx cos theta)` `=1/(square)xx1/(square)` `=cosec thetaxx sec theta` `=RHS` `:.cot theta+tan theta=cosec thetaxx sec theta` |
|
Answer» Activity: `LHS=cot theta+tan theta` `=(cos theta)/(sin theta)+(sin theta)/(cos theta)` `=(cos^(2) theta+sin^(2) theta)/(sin thetaxx cos theta)` `=1/(sin thetaxx cos theta)` `=1/(sin theta)xx1/(cos theta)` `=cosec thetaxx sec theta` `=RHS` `:.cot theta+tan theta=cosec thetaxx sec theta`. |
|
| 405. |
Prove: `(tan theta)/(sec theta-1)=(tan theta+sec theta+1)/(tan theta+sec theta-1)` |
|
Answer» Proof: `1+tan^(2)theta=sec^(2)theta` …(Identity) `:.tan^(2) theta=sec^(2)theta-1` `:.tan theta xx ta theta=(sec theta+1)(sec theta-1)` `:.(tan theta)/((sec theta-1))=((sec theta+1))/(tan theta)` By theorem on equal ratios, `(tan theta)/((sec theta-1))=((sec theta+1))/(tan theta)=(tan theta+sec theta+1)/(sec theta-1+tan theta)` `:.(tan theta)/(sec theta-1)=(tan theta+sec theta+1)/(tan theta+sec theta-1)` |
|
| 406. |
When we see at a higher level, from the horizontal line, angle formed is..A. Angle of ElevationB. Angle of DepressionC. 0D. Straight angle |
| Answer» Correct Answer - A | |
| 407. |
If `(1-tan^(2)60^(@))/(1+tan^(2)60^(@))=cosX`, then the value of X is ___________ |
| Answer» Correct Answer - `120^(@)` | |
| 408. |
Evaluate : (sin 90o/cos 45o) + (1/cosec 30o) |
|
Answer» (sin 90o/cos 45o) + (1/cosec 30o) = (1/(1/√2)) + 1/2 = √2 + 1/2 = (2√2+1)/2 |
|
| 409. |
Evaluate: `sin^(2)60^(@) cos^(2)45^(@) cos^(2)60^(@)" cosec"^(2)90^(@)` |
| Answer» Correct Answer - `(3)/(32)` | |
| 410. |
`1 + tan^2 theta` = ?A. `cot^2 theta`B. `cosec^2 theta`C. `sec^2 theta`D. `tan^2 theta` |
| Answer» Correct Answer - C | |
| 411. |
The value of `log[(sec theta+tan theta)(sec theta-tan theta)]` is ________ |
| Answer» Correct Answer - `0` | |
| 412. |
Convert`250^(g)` into other two measures. |
| Answer» Correct Answer - `(5pi^(c))/(4)` | |
| 413. |
`sin theta.cosec theta` = ……..A. 1B. 0C. `1/2`D. `sqrt2` |
| Answer» Correct Answer - A | |
| 414. |
If `( cos 13^(@)+sin13^(@))/(cos13^(@)-sin13^(@))=tan A`, then A=_________ |
| Answer» Correct Answer - `58^(@)` | |
| 415. |
If `"cosec" theta- cot theta=x`, then `"cosec"theta+cot theta=`_________ |
| Answer» Correct Answer - `(1)/(x)` | |
| 416. |
If `sin theta=(1)/(2)` and `0^(@) lt theta lt 90^(@)`, then `cos2 theta`=_________ |
| Answer» Correct Answer - `(1)/(2)` | |
| 417. |
The top of a building from a fixed point is observed at an angle of elevation `60^(@)` and the distance from the foot of the building to the point is 100 m, then the height of the building is ________. |
| Answer» Correct Answer - `100sqrt3` m | |
| 418. |
If the tip of the pendulum of a clock travels 13.2cm in one collection and the length of the pendulum is 6.3 cm, then the angle made by the pendulum in half oscillation in radian system is ___________. |
| Answer» Correct Answer - `(pi^(c))/(3)` | |
| 419. |
If `cottheta=(4)/(3) " where " 180ltthetalt270, " then " sin theta+costheta` =__________. |
| Answer» Correct Answer - `(-7)/(5)` | |
| 420. |
Prove the following:sin4 θ + cos4 θ = sin4 θ + cos4 θ |
|
Answer» L.H.S. = sin4 θ + cos4 θ = (sin2 θ)2 + (cos2 θ)2 = (sin2 θ + cos2 θ)2 – 2sin2 θ cos2 θ … [ v a2 + b2 = (a + b)2 – 2ab] = 1 – 2sin2 θ cos2 θ = R.H.S. |
|
| 421. |
\(\frac{cos\,\theta}{1-sin\,\theta}+\frac{cos\,\theta}{1+sin\,\theta}\) equals(a) 2 tan θ (b) 2 cosec θ (c) 2 cot θ (d) 2 sec θ |
|
Answer» (d) 2 sec θ \(\frac{cos\,\theta}{1-sin\,\theta}+\frac{cos\,\theta}{1+sin\,\theta}\) = \(\frac{cos\,\theta(1+sin\,\theta)+cos\,\theta(1-sin\,\theta)}{(1-sin\,\theta)(1+sin\,\theta)}\) = \(\frac{cos\,\theta+cos\,\theta\,sin\,\theta+cos\,\theta-cos\,\theta\,sin\,\theta}{1-sin^2\,\theta}\) = \(\frac{2cos\,\theta}{cos^2\,\theta}= \frac{2}{cos\,\theta}\) = 2 sec θ |
|
| 422. |
Prove the following:2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 = 0 |
|
Answer» L.H.S = 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1=0 = sin6 θ + cos6 θ = (sin2 θ)3 + (cos2 θ)3 = (sin2 θ + cos2 θ)3 – 3 sin2 θ cos2 θ (sin2 0 + cos2 0) …[••• a3 + b3 = (a + b)3 – 3ab(a + b)] = (1)3 – 3 sin2 θ cos2 θ(1) = 1-3 sin2 θ cos2 θ sin4 θ + cos4 θ = (sin2 θ)2 + (cos2 θ)2 = (sin2 θ + cos2 θ)2 – 2 sin2 θ cos θ …[Y a2 + b2 = (a + b)2 – 2ab] = 1-2 sin2 θ cos2 θ L.H.S.= 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 = 2(1-3 sin2 θ cos2 θ) -3(1 – 2 sin2 θ cos2 θ) + 1 = 2-6 sin2 θ cos2 θ – 3 + 6 sin2 θ cos2 θ + 1 = c = R.H.S. |
|
| 423. |
Consider the following: 1. tan2 θ – sin2 θ = tan2 θ sin2 θ 2. (1 + cot2 θ) (1– cos θ) (1 + cos θ) = 1Which of the statements given below is correct? (a) 1 only is the identity (b) 2 only is the identity (c) Both 1 and 2 are identities (d) Neither 1 nor 2 is the identity |
|
Answer» 1. tan2 θ - sin2 θ = \(\frac{sin^2\,\theta}{cos^2\,\theta}\) - sin2 θ = \(\frac{sin^2\,\theta - sin^2\,\theta\,cos^2\,\theta}{cos^2\,\theta}\) = \(\frac{sin^2\,\theta(1-cos^2\,\theta)}{cos^2\,\theta}\) = \(\frac{sin^2\,\theta}{cos^2\,\theta}\) x sin2 θ = tan2 θ sin2 θ 2. (1 + cot2 θ) ( 1– cos θ) (1 + cos θ) = ( 1+ cot2 θ) (1– cos2 θ) = \(\bigg(1+\frac{cos^2\,\theta}{sin^2\,\theta}\bigg)(1-cos^2\,\theta)\) = \(\bigg(\frac{sin^2\,\theta + cos^2\,\theta}{sin^2\,\theta}\bigg) \times sin^2\,\theta\) (∴ 1 – cos2 θ = sin2 θ) = 1. (cos2 θ + sin2 θ =1) ∴ (c) is the correct option. |
|
| 424. |
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =(a) 1 (b) √2 (c) 0 (d) 2 |
|
Answer» (a) 1 Given, sin θ = 1 – sin2 θ = cos2 θ ∴ cos2 θ + cos4 θ = sin θ + sin2 θ = 1 |
|
| 425. |
Prove the following:cos4 θ – sin4 θ + 1 = 2cos2 θ |
|
Answer» L.H.S. = cos4 θ – sin4 θ + 1 = (cos2 θ)2 – (sin2 θ)2 + 1 = (cos2 θ + sin2 θ) c(os2 θ – sin2 θ) +1 = (1) (cos2 θ – sin2 θ) + 1 = cos2 θ + (1 – sin2 θ) = cos2 θ + cos2 θ = 2cos2 θ = R.H.S. |
|
| 426. |
sin4 θ + 2 cos2 θ \(\bigg(1-\frac{1}{sec^2\,\theta}\bigg)\) + cos4 θ =(a) 1 (b) 2 (c) √2 (d) 0 |
|
Answer» (a) 1 sin4 θ + 2 cos2 θ \(\bigg(1-\frac{1}{sec^2\,\theta}\bigg)\) + cos4 θ = sin4 θ + 2cos2 θ (1 cos2 θ) + cos4 θ = sin4 θ + 2cos2 θ. sin2 θ + cos4 θ = (sin2 θ + cos2 θ)2 = 12 = 1 |
|
| 427. |
If 2cos2 θ – 11 cos θ + 5 = 0, then find the possible values of cos θ. |
|
Answer» 2cos2 θ – 11 cos θ + 5 = 0 ∴ 2cos2 θ – 10 cos θ – cos θ + 5 = 0 ∴ 2cos θ(cos θ – 5) – 1 (cos θ – 5) = 0 ∴ (cos θ – 5) (2cos θ – 1) = 0 cos θ – 5 = 0 or 2cos θ – 1 = 0 ∴ cos θ = 5 or cos θ = 1/2 Since, -1 ≤ cos θ ≤ 1 ∴ cos θ = 1/2 |
|
| 428. |
Find the acute angle θ such that 5tan2 θ + 3 = 9sec θ. |
|
Answer» 5tan θ + 3 = 9sec θ ∴ 5(sec2 θ – 1) + 3 = 9sec θ ∴ 5sec2 θ – 5 + 3 = 9sec θ ∴ 5sec2 θ – 9sec θ – 2 = 0 ∴ 5sec2 θ – 10 sec θ + sec θ – 2 = 0 ∴ 5sec θ(sec θ – 2) + 1(sec θ – 2) = 0 ∴ (sec θ – 2) (5sec θ + 1) = 0 ∴ sec θ – 2 = 0 or 5sec θ + 1 = 0 ∴ sec θ = 2 or sec θ = -1/5 Since sec θ ≥ 1 or sec θ ≤ -1, sec θ = 2 ∴ θ = 60° … [ ∵ sec 60° = 2] |
|
| 429. |
If `sin3theta=cos(theta-6^(@))," where "3theta and (theta-6^(@))` are acute angle then the value of `theta` is _____________.A. `42^(@)`B. `24^(@)`C. `12^(@)`D. `26^(@)` |
|
Answer» Correct Answer - B Use complementary angles. |
|
| 430. |
Find the acute angle θ such 2cos2 θ = 3sin θ. |
|
Answer» 2cos2 0 = 3sin θ ∴ 2(1 – sin2 θ) = 3sin θ ∴ 2 – 2sin2 θ = 3sin θ ∴ 2sin2 θ + 3sin 9-2 = θ ∴ 2sin2 θ + 4sin θ – sin θ – 2 = θ ∴ 2sin θ(sin θ + 2) -1 (sin θ + 2) = θ ∴ (sin θ + 2) (2sin θ – 1) = 0 ∴ sin θ + 2 = 0 or 2sin θ – 1 = 0 ∴ sin θ = -2 or sin θ = 1/2 Since, -1 ≤ sin θ ≤ 1 ∴ Sin θ = 1/2 ∴ θ = 30° …[ ∵ sin 30 = 1/2] |
|
| 431. |
If `cosectheta-cottheta =2`, find the value of `cosec^(2)theta+cot^(2)theta`. |
| Answer» Correct Answer - `(17)/(8)` | |
| 432. |
For all values of `theta,1+costheta` can be__________.A. positiveB. negativeC. non-positiveD. non-negative |
|
Answer» Correct Answer - D Recall the range of `costheta` |
|
| 433. |
`(tan^(3)theta-1)/(tantheta-1)`= ________.A. `sec^(2) theta+ tantheta`B. `sec^(2)theta-tantheta`C. 0D. `tantheta-sec^(2)theta` |
|
Answer» Correct Answer - A Use `a^(3)-b^(3)=(a-b)(a^(2)+ab+b^(2))`. |
|
| 434. |
If `sin^(4)theta-cos^(4)=k^(4), then sin^(2)theta-cos^(2)theta` is __________.A. `K^(4)`B. `K^(3)`C. `K^(2)`D. `K` |
|
Answer» Correct Answer - A `a^(4)-b^(4)=(a^(2)-b^(2))(a^(2)+b^(2))`. |
|
| 435. |
If tan `(A-30^(@))=2-sqrt3`, then find A.A. `(pi^(c))/(2)`B. `(pi^(c))/(4)`C. `(pi^(c))/(6)`D. `(pi^(c))/(3)` |
|
Answer» Correct Answer - B Use the identity `tan(A-B)=(tanA-tanB)/(1+tanAtanB)`. |
|
| 436. |
If `cos A+ sin A=(1)/(2(cosA-sinA)),(0^(@) lt A lt 90^(@))`, then `sin^(2)A`=____________ |
| Answer» Correct Answer - `(1)/(4)` | |
| 437. |
If `sin theta = 1`, then find `cot theta` = …….. A)0 B)1 C)`sqrt3` D)`1/sqrt3` |
| Answer» Correct Answer - A | |
| 438. |
If `cos(A-B)=(1)/(2) and sin(A+B)=(sqrt(3))/(2)`, then find A and B The following are the steps involved in solving the following problem. Arrange them in sequential order. (A)` 2A=120^(@)implies A=60^(@)` (B) `:. A=60^(@),B=0^(@)`. (C ) `cos(A-B)=(1)/(2) implies cos(A-B) = cos60^(@) and sin(A+B)=(sqrt(3))/(2)implies sin(A+B) = sin 60^(@)`. (D)` A+B=60^(@) and A-B=60^(@)`.A. DCABB. CADBC. DCBAD. CDAB |
|
Answer» Correct Answer - D CDAB is the required sequential order. |
|
| 439. |
If `tan(A+B)=1 and A(-B)=(1)/(sqrt(2))`, then find A and B. The following are the steps involved in solving the above problem. Arrange them in sequential order. (A) `tan (A+B)=1implies tan (A+B)=tan45^(@) and sin(A-B)=(1)/(sqrt(2))implies sin(A-B)=sin45^(@)`. (B) ` 2A=90^(@)implies A=45^(@)`. (C ) `A+B=45^(@) and A-B=45^(@)`. (D) `:. A=45^(@) and B=0^(@)`.A. DBCAB. CABDC. ACDBD. ACBD |
|
Answer» Correct Answer - D ACBD is the required sequential order. |
|
| 440. |
Find the value of `sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +sin^(2)90^(@)`.A. 8B. 9C. `(17)/(2)`D. `(19)/(2)` |
|
Answer» Correct Answer - D `sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +sin^(2)90^(@)`. `=(sin5^(@)+sin85^(@))+(sin^(2)10^(@)+sin^(2)80^(@))+* * *+sin^(2)45+sin^(2)90^(@)(sin85^(@)=cos5^(@))` `=8((1)/(sqrt2))^(2)+=9+(1)/(2)=(19)/(2)`. |
|
| 441. |
The value of `sqrt(3) tan10^(@)+sqrt(3) tan 20^(@)+1 tan 10^(@)* tan 20^(@)` is _____A. `-1`B. `0`C. `1`D. `2` |
|
Answer» Correct Answer - C (i) Use `tan (A+B)=(tan A + tan B)/(1- tanA tanB)`. (ii) Take ` tan(10^(@)+20^(@))=tan30^(@)`, i.e., `(tan10^(@)+tan20^(@))/(1-tan10^(@)* tan20^(@))=(1)/(sqrt(3))` and simplify. |
|
| 442. |
If `tanP+ cot P=2`, then the value of `tan^(n)P+ cot^(n)P` is _______A. 2B. `2^(n)`C. `2^(n-1)`D. `2^(n+1)` |
|
Answer» Correct Answer - A If `x+(1)/(x)=2`, then ` x^(n)+(1)/(x^(n))=2` |
|
| 443. |
If `sin^(2)alpha+ sin alpha=1`, then the value of `cos^(4) alpha+ cos^(2) alpha` is ________ |
|
Answer» Correct Answer - C (i) Use `sin^(2)x+ cot^(2)x=1`. (ii) `cos^(4)alpha=(1- sin^(2)alpha)^(2)`. (iii) `cos^(2) alpha=(1- sin^(2) alpha)`. (iv) Substitue the above values in the given expression. |
|
| 444. |
If `sin beta + cos beta=(5)/(4)`, then find the value of ` sin beta * cos beta`.A. `(1)/(4)`B. `(9)/(32)`C. `(5)/(16)`D. `(11)/(32)` |
|
Answer» Correct Answer - B (i) By squaring on both sides of the given equation we can obtain. (ii) Square on both sides of ` sin beta + cos beta =(5)/(4)`. |
|
| 445. |
If `tan(A-B)=1 and sinA(+B)=(sqrt(3))/(2)`, then find B.A. `42(1^(@))/(2)`B. `7(1^(@))/(2)`C. `15(1^(@))/(2)`D. `60^(@)` |
|
Answer» Correct Answer - B (i) Use `tan45^(@)=1 and sin60^(@)=(sqrt(3))/(2)`. (ii) If `tan(A-B)=1, " then " A-B=45^(@)`. (iii) If ` sin(A+B)=(sqrt(3))/(2), " then " A+B=60^(@)`. (iv) Subtract the above tow equations and find B. |
|
| 446. |
`sin^(4) theta + cos^(4) theta` in terms of ` sin theta` is ______A. `2 sin^(4) theta -2 sin^(2) theta-1`B. `2 sin^(4) theta-2 sin^(2)theta+1`C. `2 sin^(4) theta + 2 sin^(2) theta-1`D. `2 sin^(4)theta-2 sin^(2)theta` |
|
Answer» Correct Answer - B (i) Use `(a+b)^(2)=a^(2)+b^(2)+2ab and cos^(2)theta=1-sin^(2) theta `. (ii) Take `cos 4 theta ` as (1- sin^(2) theta)^(2)` and simplify. |
|
| 447. |
Evaluate: \(\frac{sin30^o + tan45^o - cosec45^o}{sec30^o + cos60^0 + cot45^o}\) |
|
Answer» \(\frac {sin30° + tan 45° - cosec 45° }{sec30° + cos60° + cot 45°}\) \(= \cfrac {\frac12 + 1 - \sqrt2}{\frac2{\sqrt 3} + \frac 12 + 1}\) \(= \cfrac {\frac 32 - \sqrt 2}{\frac 32 + \frac 2{\sqrt3}}\) \(= \cfrac{\frac{3 - 2\sqrt 2}2}{\frac{3\sqrt 3 + 4} {2\sqrt 3}}\) \(= \frac {(3 - 2\sqrt 2) (3\sqrt 3 - 4)\sqrt 3}{(3\sqrt 3 + 4)(3\sqrt 3 - 4)}\) \(= \frac {(9\sqrt 3 - 6\sqrt 6 - 12 + 8\sqrt 2)\sqrt 3}{27 - 16}\) \(=\frac 1{11} (9\sqrt 3 - 6\sqrt 6 + 8\sqrt2 -12) \sqrt 3\) |
|
| 448. |
The simplified form of `sqrt(1+sin""((x)/(8)))` is ______A. `sin""((x)/(8))+cos""((x)/(8))`B. `sin""((x)/(16))+cos""((x)/(16))`C. `sin""((x)/(4))+cos""((x)/(4))`D. None of these |
|
Answer» Correct Answer - B (i) Apply `sqrt(1+sin2A)= sinA+ cos A`. (ii) `sin""(x)/(8) = sin2((x)/(16)) and sin2 theta=2 sin theta cos theta. ` (iii) Use the identity `1=sin^(2) theta + cos^(2) theta`. |
|
| 449. |
The value of `(3 tan 30^(@)-tan^(3)30^(@))/(1- 3 tan^(2)30^(@))` is _______A. `tan 90^(@)`B. `tan 60^(@)`C. `tan 45^(@)`D. `tan 30^(@)` |
|
Answer» Correct Answer - A (i) Use `tan30^(@)=(1)/(sqrt(3))` (ii) Substitute the value of `tan30^(@)` and simplify. (iii) Then check from the options. |
|
| 450. |
The value of `cot5^(@)*cot15^(@)* cot 25^(@)* cot 35^(@)* cot45^(@) * cot 55^(@) * cot65^(@) * cot 75^(@) * cot 85^(@)` is ________ |
|
Answer» Correct Answer - D Use `cotA*cot(90-A)=1` |
|