InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 301. |
Eliminate `theta` from the equation `s=sin theta +"cosec" theta and r= sin theta-"cosec" theta` . |
|
Answer» Given, `s=sin theta + "cosec"theta" "`(1) `r= sin theta- "cosec"theta" "`(2) Adding Eqs. (1) and (2), we get `s+r=2 sin theta ` `sin theta=(s+r)/(2)" " `(3) Substrating Eq. (2) from Eq. (1), we get `s-r=2 "cosec"theta` `"cosec" theta=(s-r)/(2)" "` (4) Multiplying Eqs. (3) and (4), we get `sin theta * "cosec" theta=((s+r)/(2))((s-r)/(2))` `sin theta*(1)/(sin theta)-(s^(2)-r^(2))/(4)` `1=(s^(2)-r^(2))/(4) (or) s^(2)-r^(2)=4`. Hence, by eliminating `theta`, we obtain the relation `s^(2)-r^(2)=4`. |
|
| 302. |
Eliminate 0 from the following: x = 5 + 6 cosec θ,y = 3 + 8 cot θ |
|
Answer» x = 5 + 6cosec θ and y = 3 + 8cot θ ∴ x – 5 = 6cosec θ and y – 3 = 8cot θ ∴ cosec θ = \(\frac{x-5}{6}\) and cot θ \(\frac{y-3}{8}\) We know that, cosec2 θ – cot2 θ = 1 ∴ \((\frac{x-5}{6})^2 - (\frac{y-3}{8})^2=1\) |
|
| 303. |
Eliminate 0 from the following: x = 6cosec θ,y = 8cot θ |
|
Answer» x = 6cosec θ and y = 8cot θ ∴ cosec θ = and cot θ = We know that, cosec2 θ – cot2 θ = ∴ \((\frac{x}{6})^2 - (\frac{y}{8})^2=1\) ∴ \(\frac{x^2}{36} - \frac{y^2}{64}=1\) 16x2 – 9y2 = 576 |
|
| 304. |
Eliminate 0 from the following: x = 3sec θ, y = 4tan θ |
|
Answer» x = 3sec θ, y = 4tan θ ∴ sec2 θ = x/3 and tan θ = y/4 We know that, sec2θ - tan2θ = 1 ∴ \((\frac{x}{3})^2 - (\frac{y}{4})^2 = 1\) ∴ \(\frac {x^2}{9} - \frac{y^2}{16}=1\) ∴ 16x2 – 9y2 = 144 |
|
| 305. |
If `tan 28^(@)=n, " then find the value of " (tan152^(@)+tan62^(@))/(tan242^(@)+tan28^(@))`. |
| Answer» Correct Answer - `(1-n^(2))/(1+n^(2))` | |
| 306. |
If A and B are angles in the second quadrant, then prove that 4cosA + 3 cos B = -5 |
|
Answer» Given, \(\frac{sin A}{3} = \frac{sin B}{4} = \frac{1}{5}\) ∴ sin A = \(\frac{3}{5}\) and sin B = \(\frac{4}{5}\) We know that, cos2 A = 1 - sin2 = 1 - \((\frac{3}{5})^2 = 1 - \frac{9}{25} = \frac{16}{25}\) ∴ Cos A = ± 4/5 Since A lies in the second quadrant, cos A < 0 ∴ Cos A = – 4/5 Sin B = 4/5 We know that, cos2 B = 1 - sin2 B = 1 - \((\frac{4}{5})^2 = 1 - \frac{16}{25} = \frac {9}{25}\) ∴ Cos B = ± 4/5 Since B lies in the second quadrant, cos B < 0 ∴ cos B = - 3/5 ∴ 4cos A + 3 cos B = \(4(-\frac{4}{5}) + 3 (-\frac{3}{5})\) = \(-\frac{16}{5} - \frac {9}{5} = -\frac{25}{5}= -5\) |
|
| 307. |
Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C |
|
Answer» L.H.S. = sin2A + sin2B + sin2C = 2sin(A + B) · cos(A – B) + 2sinCcosC = 2sinC.cos(A – B) + 2 sinC cosC = 2sinC [cos(A – B) – cos(A + B)] = 2 sinC[-2 sinA · sin(-B)] = 4sinA . sinB . sinC ∵ sin(-B) = R.H.S. = SinB. |
|
| 308. |
If `3sinA +4cosA=4, " then find " 4sinA -3cosA`. |
| Answer» Correct Answer - `pm3` | |
| 309. |
If A + B + C = \(\frac{\pi}{2}\). P.T tanA · tanB + tanB . tanC + tanC · tanA = 1 |
|
Answer» Given A + B + C = \(\frac{\pi}{2}\); A + B = 90° – C; tan(A + B) = tan(90° – C) \(\frac{tanA + tanB}{1 - tanAtanB} = cotc \) \(\frac{1}{tanC}\) ⇒ tanA tanC + tanB tanC = 1 – tanA · tanB ⇒ tan A tanB + tanB tanC + tanC tanA = 1. |
|
| 310. |
If A + B + C = π, Prove that tan A + tan B + tan C = tan A . tanB · tan C |
|
Answer» Given A + B + C = π ⇒ A + B = π – C tan(A + B) = tan(180 – C) \(\frac{tanA + tanB}{1 - tanA.tanB} = - \frac{tanc}{1}\) tanA + tanB = – tanc – tanB tanB · tanc tanA + tanB + tanC = tanA tanB tanC |
|
| 311. |
Prove that \(\frac{cos2A}{secA}\) + \(\frac{sin2A}{cosA}\) = cosA |
|
Answer» L.H.S. = cos2A .\(\frac{1}{secA}\) + sin 2A .\(\frac{1}{cosA}\) = cos2A . cosA + sin2A . sinA = cos(2A – A) = cosA = R.H.S. |
|
| 312. |
If Tan θ + Sec θ = 8, then Sec θ – Tan θ value isA) 8B) 1/8C) 6 D) 64 |
|
Answer» Correct option is: B) \(\frac 18\) We have Tan \(\theta\) + Sec \(\theta\) = 8 \(\therefore\) ( sec \(\theta\) + tan \(\theta\)) (sec \(\theta\) - tan \(\theta\)) = 8 (sec \(\theta\) - tan \(\theta\)) (on multiplying both sides by sec \(\theta\) - tan \(\theta\)) = \(sec^2\theta-tan^2 \theta\) = 8 (sec \(\theta\) - tan \(\theta\)) (\(\because\) (a+b) (a-b) = \(a^2 - b^2\)) = 8 (sec \(\theta\) - tan \(\theta\)) = 1 (\(\because\) \(sec^2\theta-tan^2 \theta\) = 1) = sec \(\theta\) - tan \(\theta\) = \(\frac 18\) Correct option is: B) \(\frac{1}{8}\) |
|
| 313. |
Write the acute angle θ satisfying √3 sin θ = cos θ |
|
Answer» Given, √3 sin θ = cos θ sin θ / cos θ = 1/√3 tan θ = 1/ √3 …(the value of tan 30° is 1/√3) Therefore, tan θ = tan 30°θ = 30° |
|
| 314. |
If A + B = 90° and cos B = 3/5, what is the value of sin A? |
|
Answer» Given, cos B = 3/5 and A + B = 90° So we have, B = 90° - A So, cos B = cos (90° - A) = 3/5 ∵ cos B = sin A Therefore, sin A = 3/5 |
|
| 315. |
2sin 3x = √3, x = ? |
|
Answer» Sin 3x =√3/2 Sin 3x = sin 60° Equating angles we get, 3x = 60° |
|
| 316. |
If sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤90°, A ≥ B find A and B. |
|
Answer» Given: sin (A + B) = 1 and cos (A – B) = 1 sin(A+B) = 1 Also, we know, sin 90° = 1 ⇒ sin(A+B) = sin 90° or (A+B) = 90° .............(1) Now, cos (A – B) = 1 And, we know, cos 0° = 1 ⇒ (A - B) = 0° .............(2) On solving both equations (1) and (2) , we get 2A = 90° or A = 90°/2 or A = 45° Similarly, B = 45° |
|
| 317. |
If `sin theta and cos theta ` are the roots of the quadratic equation `lx^(2)-mx-n=0`, then find the relation between l,m and n. |
| Answer» Correct Answer - `l^(2)-m^(2)=2nl` | |
| 318. |
If `cos^(2)alpha+ cos alpha=1`, then find the value of `4 sin^(2)alpha+4 sin^(4) alpha+2`. |
| Answer» Correct Answer - 6 | |
| 319. |
One of the angles of a rhombus is `60^(@)` and the length of the diagonal opposite to it is 6 cm. Find the area of the rhombus ( in sq. cm ). |
| Answer» Correct Answer - `18sqrt(3)` | |
| 320. |
Obtain the relation by eliminating ` theta` from the equation, `x=a +r cos theta and y=b+ r sin theta `.A.B.C.D. |
| Answer» Correct Answer - `(x-a)^(2)+(y-b)^(2)=r^(2)` | |
| 321. |
Prove that cos A + cos (120° – A) + cos(120° + A) = 0 |
|
Answer» L.H.S. = cosA + cos A(120° – A) + cos(120° + A) = cosA + 2cos 120°. cosA = cosA + 2cosA (-cos60°) {∵ cos 120° = cos (180° - 60°) = -cos 60°} = cos A – 2 cosA . \(\frac{1}{2}\) = 0 = R.H.S. |
|
| 322. |
Find the value of `sin 60^(@)+ 2tan45^(@)-cos30^(@)`. |
|
Answer» `sin60^(@)+2tan45^(@)-cos30^(@)` `=(sqrt(3))/(2)+2(1)-(sqrt(3))/(2)=2` `:. Sin60^(@)+2tan45^(@)-cos30^(@)=2` |
|
| 323. |
The value of `log_(sec theta ) (1- sin^(2) theta )` is ______A. 2B. `-2`C. `0`D. 1 |
|
Answer» Correct Answer - B Use `cos^(2) theta + sin^(2) theta=1` |
|
| 324. |
` sin^(4) theta - cos^(4) theta`=______A. `-1`B. `cos 2 theta `C. `2 sin^(2) theta-1`D. `sin 2 theta ` |
|
Answer» Correct Answer - C Apply `a^(2)-b^(2)=(a+b)(a-b)` |
|
| 325. |
The angle measuring `(pi)/(4)` when expressed in sexagesimal measure is ______ |
|
Answer» Given , `R=(pi)/(4)` We have, `(D)/(90)=(R )/((pi)/(2))` So, `(D)/(90)=((pi)/(4))/((pi)/(2))` `D=(2)/(4)xx90=45^(@)` Hence, the sexagesimal measure of `(pi^( c))/(4)` is `45^(@)`. |
|
| 326. |
Convert `60^(@)` into circular measure. |
|
Answer» Given, `D=60^(@)` We have, `(D)/(90)=(R )/((pi)/(2))` So, `(60)/(90)=( R)/((pi)/(2))` `(2)/(3)xx(pi)/(2)=R` `R=(pi)/(3)` Hence, `60^(@)` in cicular measure is `(pi)/(3)` |
|
| 327. |
If `sin alpha+ cos alpha=n`, then ` sin^(6)alpha+ cos^(6)alpha` in terms of n is ________A. `4+3(n-1)^(2)`B. `(4+3(n^(2)-1))/(4)`C. `4-3(n^(2)-1)^(2))/(4)`D. None of these |
|
Answer» Correct Answer - C (i) `sin^(6)alpha+cos^(6)alpha=(sin^(2)alpha)^(3)+(cos^(2)alpha)^(3)`. Use the formula ` a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)`. (ii) Find `sin alpha* cos alpha ` by substituting ` sin alpha+ cos alpha=n` in the above equations. |
|
| 328. |
If tan2 y cosec2 x – 1 = tan2 y, then which one of the following is correct?(a) x – y = 0 (b) x = 2y (c) y = 2x (d) x – y = 1° |
|
Answer» (a) x – y = 0 tan2 y cosec2 x – 1 = tan2 y ⇒ tan2 y cosec2 x – tan2 y = 1 ⇒ tan2 y (cosec2 x – 1) = 1 ⇒ tan2 y . cot2 x = 1 ⇒ cot2 x = cot2 y ⇒ x = y ⇒ x – y = 0. |
|
| 329. |
If `A=sin theta+ cos theta and B=sin theta - cos theta`, then which of the following is true ?A. `A^(2)+B^(2)=1`B. `A^(2)-B^(2)=2`C. `A^(2)+B^(2)=2`D. `2A^(2)+B^(2)=4` |
|
Answer» Correct Answer - C Apply `(a+b)^(2)+(a-b)^(2)=2(a^(2)+b^(2)) and sin^(2) theta+ cos^(2) theta =1 `. |
|
| 330. |
If `sec theta + tan theta=(4)/(3)`, then ` sec theta tan theta `=_______A. `(175)/(24)`B. `(25)/(576)`C. `(27)/(576)`D. `(175)/(576)` |
|
Answer» Correct Answer - D Squaring both sides of given equations. |
|
| 331. |
If `cot(A-B)=1 and cos (A+B)=(1)/(2)`, then find BA. `42(1^(@))/(2)`B. `7(1^(@))/(2)`C. `15(1^(@))/(2)`D. `60^(@)` |
|
Answer» Correct Answer - B Use ` tan 45^(@)=1 and sin 60^(@)=(sqrt(3))/(2)`. |
|
| 332. |
Find the value of `4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(2)90^(@))`.A. `-(1)/(2)`B. `-2`C. `2`D. `(1)/(2)` |
|
Answer» Correct Answer - B Use trigonometric ratios values from table. |
|
| 333. |
Convert `180^(g)` into sexagesimal measure . |
|
Answer» Given, `G=180^(g)` We have, `(D)/(90)=(G)/(100)` So, `(D)/(90)=(180)/(100)` `D=(9)/(5)xx90=162` Hence, sexagesimal measure of `180^(g)` is `162^(@)` |
|
| 334. |
The value of `(3 pi^( c))/(5)` in sexagesimal measure is ________A. `216^(@)`B. `144^(@)`C. `128^(@)`D. `108^(@)` |
|
Answer» Correct Answer - D Replace `pi^( c)` by `180^(@)` |
|
| 335. |
Find the measure of angle A, if `(2 sin A +1)(2 sin A-1)=0`A. `75^(@)`B. `60^(@)`C. `45^(@)`D. `30^(@)` |
|
Answer» Correct Answer - D Use `(a+b) (a-b)=a^(2)-b^(2)` and solve. |
|
| 336. |
If `sin A=(1)/(2) and 90^(@) lt A lt 180^(@)`, then the value of a in circular measure is ________A. `(pi)/(6)`B. `(pi)/(3)`C. `(5pi)/(6)`D. `(7pi)/(6)` |
|
Answer» Correct Answer - C Find the value of A and then multiply it by `(pi)/(180)`. |
|
| 337. |
If A and B are complementary angles, then the value of `(sin^(2)A + sin^(2)B)/("cosec"^(2)A-tan^(2)B)` is ________ |
|
Answer» Correct Answer - B (i) `sin^(2)A=sin^(2)(90-B)`. If A and B complementary angles. (ii) If `A+B=90^(@)`, then ` sin A = cos B and tan B= cot A`. |
|
| 338. |
Evaluate each of the following:sin 60° cos 30° + cos 60°sin 30° |
|
Answer» Given : sin 60° cos 30° + cos 60°sin 30° To find : The value of sin 60° cos 30° + cos 60°sin 30° Solution : Use the values: sin 30 = \(\frac{1}{2}\), sin 60 = \(\frac{\sqrt3}{2}\),cos30 = \(\frac{\sqrt3}{2}\) and cos 60 = \(\frac{1}{2}\) sin 60° cos 30° + cos 60°sin 30° Solve, \(\frac{\sqrt3}{2}\) x \(\frac{\sqrt3}{2}\) + \(\frac{1}{2}\) x \(\frac{1}{2}\) = \(\frac{3}{4}\) + \(\frac{1}{4}\) = 1 Hence the value of sin 60° cos 30° + cos 60°sin 30° is 1. |
|
| 339. |
If `tan A=(1)/(2) and tan B=(1)/(3)`, then which of the following is true ?A. `A+B=(pi^( c))/(4)`B. `A-B=(pi^( c))/(4)`C. `2A+B=(pi^( c))/(4)`D. `A+2=(pi^( c))/(4)` |
|
Answer» Correct Answer - A Apply ` tan(A+B)=(tan A + tan B)/( 1- tan A tan B)` |
|
| 340. |
`sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=`A. `"cosec"^(2) theta `B. `1`C. `1+ cot theta `D. `1+ tan theta ` |
|
Answer» Correct Answer - C `1+ sin 2 theta =( sin theta + cos theta )2, " when" theta in[0,(pi)/(4)]`. |
|
| 341. |
The value of `cos 2 theta ` in terms of `cot theta ` is ________A. `(cot^(2)theta+1)/(cot^(1)theta-1)`B. `(1+ cot^(2) theta)/(cot^(2)theta-1)`C. `(cot^(2)theta-1)/(cot^(2)theta+1)`D. `(1- cot^(2) theta )/(1+cot^(2) theta )` |
|
Answer» Correct Answer - C Use `cos 2 theta =(1- tan^(2) theta )/(1+ tan^(2) theta )`. |
|
| 342. |
The value of `sin theta ` in terms of `tan theta ` is _______A. `(tan theta )/(sqrt(1-tan^(2) theta))`B. `(tan^(2) theta )/(sqrt(1+tan^(2)theta))`C. `(tan^(2) theta )/(sqrt(1-tan^(2)theta))`D. `(tan theta )/(sqrt(1+tan^(2) theta))` |
|
Answer» Correct Answer - D Use `sec^(2) theta- tan^(2) theta=1` |
|
| 343. |
If `tan alpha=3 and tan beta=(1)/(2)`, then which of the following is true ?A. `alpha+beta=(pi^ c)/(4)`B. `alphabeta=(pi^(c ))/(4)`C. `alpha- beta=(pi^(c ))/(4)`D. None of these |
|
Answer» Correct Answer - C Use the identity `tan ( alpha+ beta )=( tan alpha+ tan beta )/(1- tan alpha tan beta )` |
|
| 344. |
If 8 tan A = 15, find sinA - cosA |
|
Answer» tan A = \(\frac{15}8\) ⇒ sin A = \(\frac{15}{17}\) and cos A = \(\frac{8}{17}\) ∴ sin A - cos A = \(\frac{15}{17}\) - \(\frac{8}{17}\) = \(\frac{7}{17}\) |
|
| 345. |
The simplified value of `sin^(4)alpha+cos^(4)alpha+(1)/(2) sin^(2) 2 alpha` isA. `-1`B. `sin alpha+ cos alpha`C. 0D. 1 |
|
Answer» Correct Answer - D Use `a^(2)+b^(2)=(a+b)^(2)-2ab`. |
|
| 346. |
The value of `sin^(2) 60^(@)+cos^(2)30^(@)-sin^(2)45^(@)` is _________A. 1B. ` sin 90^(@)`C. `(1)/(2)`D. Both (a) and (b) |
|
Answer» Correct Answer - D Take the values of trigonometric ratios from the table. |
|
| 347. |
If `3 tan A=4`, then find the value of `(2 sinA-7 cos A)/(3 cosA+4)`.A. `(-13)/(29)`B. `(13)/(11)`C. `oo`D. `(29)/(13` |
|
Answer» Correct Answer - A Find `sinA, cos A` using trianlge `ABC`. |
|
| 348. |
The simplified value of `cosec^(2) alpha(1+(1)/(sec alpha))(1-(1)/(sec alpha))` is ______A. 1B. 0C. 2D. `-1` |
|
Answer» Correct Answer - A Use `(A+b)(a-b)=a^(2)-b^(2) and cos^(2) theta + sin^(2) theta=1` |
|
| 349. |
A wheel makes 240 revolution in one minutes. Find the measure of the angle it describes at the centre in 15 seconds.A. `60pi^(c )`B. `120pi^(c ) `C. `8 pi^(c )`D. None of these |
|
Answer» Correct Answer - B Use, 1 revolution `=2pi` |
|
| 350. |
In the adjoining figure, find the value of sin C. |
| Answer» Correct Answer - `(2sqrt(5))/(5)` | |