Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

Eliminate `theta` from the equation `s=sin theta +"cosec" theta and r= sin theta-"cosec" theta` .

Answer» Given, `s=sin theta + "cosec"theta" "`(1)
`r= sin theta- "cosec"theta" "`(2)
Adding Eqs. (1) and (2), we get
`s+r=2 sin theta `
`sin theta=(s+r)/(2)" " `(3)
Substrating Eq. (2) from Eq. (1), we get
`s-r=2 "cosec"theta`
`"cosec" theta=(s-r)/(2)" "` (4)
Multiplying Eqs. (3) and (4), we get
`sin theta * "cosec" theta=((s+r)/(2))((s-r)/(2))`
`sin theta*(1)/(sin theta)-(s^(2)-r^(2))/(4)`
`1=(s^(2)-r^(2))/(4) (or) s^(2)-r^(2)=4`.
Hence, by eliminating `theta`, we obtain the relation `s^(2)-r^(2)=4`.
302.

Eliminate 0 from the following: x = 5 + 6 cosec θ,y = 3 + 8 cot θ

Answer»

x = 5 + 6cosec θ and y = 3 + 8cot θ 

∴ x – 5 = 6cosec θ and y – 3 = 8cot θ

∴ cosec θ = \(\frac{x-5}{6}\) and cot θ \(\frac{y-3}{8}\)

We know that,

cosec2 θ – cot2 θ = 1

 ∴ \((\frac{x-5}{6})^2 - (\frac{y-3}{8})^2=1\)

303.

Eliminate 0 from the following: x = 6cosec θ,y = 8cot θ

Answer»

x = 6cosec θ and y = 8cot θ 

∴ cosec θ = and cot θ = 

We know that, 

cosec2 θ – cot2 θ =

∴ \((\frac{x}{6})^2 - (\frac{y}{8})^2=1\)

∴ \(\frac{x^2}{36} - \frac{y^2}{64}=1\)

16x2 – 9y2 = 576

304.

Eliminate 0 from the following: x = 3sec θ, y = 4tan θ

Answer»

x = 3sec θ, y = 4tan θ

∴ sec2 θ = x/3 and tan θ = y/4

We know that,

sec2θ - tan2θ = 1

∴ \((\frac{x}{3})^2 - (\frac{y}{4})^2 = 1\)

∴ \(\frac {x^2}{9} - \frac{y^2}{16}=1\)

∴ 16x2 – 9y2 = 144

305.

If `tan 28^(@)=n, " then find the value of " (tan152^(@)+tan62^(@))/(tan242^(@)+tan28^(@))`.

Answer» Correct Answer - `(1-n^(2))/(1+n^(2))`
306.

If A and B are angles in the second quadrant, then prove that 4cosA + 3 cos B = -5

Answer»

Given\(\frac{sin A}{3} = \frac{sin B}{4} = \frac{1}{5}\)

∴ sin A = \(\frac{3}{5}\) and sin B = \(\frac{4}{5}\)

We know that,

cos2 A = 1 - sin2 = 1 - \((\frac{3}{5})^2 = 1 - \frac{9}{25} = \frac{16}{25}\)

∴ Cos A = ± 4/5

Since A lies in the second quadrant

cos A < 0 

∴ Cos A = – 4/5 

Sin B = 4/5 

We know that,

cos2 B = 1 - sin2 B = 1 - \((\frac{4}{5})^2 = 1 - \frac{16}{25} = \frac {9}{25}\)

∴ Cos B = ± 4/5

Since B lies in the second quadrant, cos B < 0 

∴ cos B = - 3/5

∴ 4cos A + 3 cos B = \(4(-\frac{4}{5}) + 3 (-\frac{3}{5})\) 

\(-\frac{16}{5} - \frac {9}{5} = -\frac{25}{5}= -5\)

307.

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Answer»

L.H.S. = sin2A + sin2B + sin2C 

= 2sin(A + B) · cos(A – B) + 2sinCcosC 

= 2sinC.cos(A – B) + 2 sinC cosC 

= 2sinC [cos(A – B) – cos(A + B)] 

= 2 sinC[-2 sinA · sin(-B)] 

= 4sinA . sinB . sinC 

∵ sin(-B) = R.H.S. = SinB.

308.

If `3sinA +4cosA=4, " then find " 4sinA -3cosA`.

Answer» Correct Answer - `pm3`
309.

If A + B + C = \(\frac{\pi}{2}\). P.T tanA · tanB + tanB . tanC + tanC · tanA = 1

Answer»

Given A + B + C = \(\frac{\pi}{2}\); A + B = 90° – C; tan(A + B) = tan(90° – C)

\(\frac{tanA + tanB}{1 - tanAtanB} = cotc \)

\(\frac{1}{tanC}\)

⇒ tanA tanC + tanB tanC = 1 – tanA · tanB 

⇒ tan A tanB + tanB tanC + tanC tanA = 1.

310.

If A + B + C = π, Prove that tan A + tan B + tan C = tan A . tanB · tan C

Answer»

Given A + B + C = π 

⇒ A + B = π – C 

tan(A + B) = tan(180 – C) 

\(\frac{tanA + tanB}{1 - tanA.tanB} = - \frac{tanc}{1}\)

tanA + tanB = – tanc – tanB tanB · tanc 

tanA + tanB + tanC = tanA tanB tanC

311.

Prove that \(\frac{cos2A}{secA}\) + \(\frac{sin2A}{cosA}\) = cosA

Answer»

L.H.S. = cos2A .\(\frac{1}{secA}\) + sin 2A .\(\frac{1}{cosA}\) 

= cos2A . cosA + sin2A . sinA 

= cos(2A – A) = cosA = R.H.S.

312.

If Tan θ + Sec θ = 8, then Sec θ – Tan θ value isA) 8B) 1/8C) 6 D) 64

Answer»

Correct option is: B) \(\frac 18\)

We have Tan \(\theta\) + Sec  \(\theta\)  = 8

\(\therefore\) ( sec \(\theta\) + tan \(\theta\)) (sec \(\theta\) - tan \(\theta\)) = 8 (sec \(\theta\) - tan \(\theta\))

(on multiplying both sides by sec \(\theta\) - tan \(\theta\))

\(sec^2\theta-tan^2 \theta\) = 8 (sec \(\theta\) - tan \(\theta\)) (\(\because\) (a+b) (a-b) = \(a^2 - b^2\))

= 8 (sec \(\theta\) - tan \(\theta\)) = 1 (\(\because\) \(sec^2\theta-tan^2 \theta\) = 1)

= sec \(\theta\) - tan \(\theta\) = \(\frac 18\) 

Correct option is: B) \(\frac{1}{8}\)

313.

Write the acute angle θ satisfying √3 sin θ = cos θ

Answer»

Given, 

√3 sin θ = cos θ 

sin θ / cos θ = 1/√3

tan θ = 1/ √3 …(the value of tan 30° is 1/√3)

Therefore, tan θ = tan 30°θ = 30°

314.

If A + B = 90° and cos B = 3/5, what is the value of sin A?

Answer»

Given, 

cos B = 3/5 and 

A + B = 90° 

So we have, 

B = 90° - A 

So, 

cos B = cos (90° - A) = 3/5 

∵ cos B = sin A 

Therefore, 

sin A = 3/5

315.

2sin 3x = √3, x = ?

Answer»

Sin 3x =√3/2 Sin 3x = sin 60°

Equating angles we get,

3x = 60°
x = 20°

316.

If sin (A + B) = 1 and cos (A – B) = 1, 0° &lt; A + B ≤90°, A ≥ B find A and B.

Answer»

Given: sin (A + B) = 1 and cos (A – B) = 1 

sin(A+B) = 1 

Also, we know, sin 90° = 1 

⇒ sin(A+B) = sin 90° 

or (A+B) = 90° .............(1) 

Now, cos (A – B) = 1 

And, we know, cos 0° = 1 

⇒ (A - B) = 0° .............(2) 

On solving both equations (1) and (2) , 

we get 

2A = 90° 

or A = 90°/2 

or A = 45°

Similarly, B = 45°

317.

If `sin theta and cos theta ` are the roots of the quadratic equation `lx^(2)-mx-n=0`, then find the relation between l,m and n.

Answer» Correct Answer - `l^(2)-m^(2)=2nl`
318.

If `cos^(2)alpha+ cos alpha=1`, then find the value of `4 sin^(2)alpha+4 sin^(4) alpha+2`.

Answer» Correct Answer - 6
319.

One of the angles of a rhombus is `60^(@)` and the length of the diagonal opposite to it is 6 cm. Find the area of the rhombus ( in sq. cm ).

Answer» Correct Answer - `18sqrt(3)`
320.

Obtain the relation by eliminating ` theta` from the equation, `x=a +r cos theta and y=b+ r sin theta `.A.B.C.D.

Answer» Correct Answer - `(x-a)^(2)+(y-b)^(2)=r^(2)`
321.

Prove that cos A + cos (120° – A) + cos(120° + A) = 0

Answer»

L.H.S. = cosA + cos A(120° – A) + cos(120° + A) 

= cosA + 2cos 120°. cosA 

= cosA + 2cosA (-cos60°) {∵ cos 120° = cos (180° - 60°) = -cos 60°}

= cos A – 2 cosA . \(\frac{1}{2}\) = 0 = R.H.S.

322.

Find the value of `sin 60^(@)+ 2tan45^(@)-cos30^(@)`.

Answer» `sin60^(@)+2tan45^(@)-cos30^(@)`
`=(sqrt(3))/(2)+2(1)-(sqrt(3))/(2)=2`
`:. Sin60^(@)+2tan45^(@)-cos30^(@)=2`
323.

The value of `log_(sec theta ) (1- sin^(2) theta )` is ______A. 2B. `-2`C. `0`D. 1

Answer» Correct Answer - B
Use `cos^(2) theta + sin^(2) theta=1`
324.

` sin^(4) theta - cos^(4) theta`=______A. `-1`B. `cos 2 theta `C. `2 sin^(2) theta-1`D. `sin 2 theta `

Answer» Correct Answer - C
Apply `a^(2)-b^(2)=(a+b)(a-b)`
325.

The angle measuring `(pi)/(4)` when expressed in sexagesimal measure is ______

Answer» Given , `R=(pi)/(4)`
We have, `(D)/(90)=(R )/((pi)/(2))`
So, `(D)/(90)=((pi)/(4))/((pi)/(2))`
`D=(2)/(4)xx90=45^(@)`
Hence, the sexagesimal measure of `(pi^( c))/(4)` is `45^(@)`.
326.

Convert `60^(@)` into circular measure.

Answer» Given, `D=60^(@)`
We have, `(D)/(90)=(R )/((pi)/(2))`
So, `(60)/(90)=( R)/((pi)/(2))`
`(2)/(3)xx(pi)/(2)=R`
`R=(pi)/(3)`
Hence, `60^(@)` in cicular measure is `(pi)/(3)`
327.

If `sin alpha+ cos alpha=n`, then ` sin^(6)alpha+ cos^(6)alpha` in terms of n is ________A. `4+3(n-1)^(2)`B. `(4+3(n^(2)-1))/(4)`C. `4-3(n^(2)-1)^(2))/(4)`D. None of these

Answer» Correct Answer - C
(i) `sin^(6)alpha+cos^(6)alpha=(sin^(2)alpha)^(3)+(cos^(2)alpha)^(3)`. Use the formula ` a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)`.
(ii) Find `sin alpha* cos alpha ` by substituting ` sin alpha+ cos alpha=n` in the above equations.
328.

If tan2 y cosec2 x – 1 = tan2 y, then which one of the following is correct?(a) x – y = 0 (b) x = 2y (c) y = 2x (d) x – y = 1°

Answer»

(a) x – y = 0

tan2 y cosec2 x – 1 = tan2

⇒ tan2 y cosec2 x – tan2 y = 1 

⇒ tan2 y (cosec2 x – 1) = 1 

⇒ tan2 y . cot2 x = 1 ⇒ cot2 x = cot2 y ⇒ x = y ⇒ x – y = 0.

329.

If `A=sin theta+ cos theta and B=sin theta - cos theta`, then which of the following is true ?A. `A^(2)+B^(2)=1`B. `A^(2)-B^(2)=2`C. `A^(2)+B^(2)=2`D. `2A^(2)+B^(2)=4`

Answer» Correct Answer - C
Apply `(a+b)^(2)+(a-b)^(2)=2(a^(2)+b^(2)) and sin^(2) theta+ cos^(2) theta =1 `.
330.

If `sec theta + tan theta=(4)/(3)`, then ` sec theta tan theta `=_______A. `(175)/(24)`B. `(25)/(576)`C. `(27)/(576)`D. `(175)/(576)`

Answer» Correct Answer - D
Squaring both sides of given equations.
331.

If `cot(A-B)=1 and cos (A+B)=(1)/(2)`, then find BA. `42(1^(@))/(2)`B. `7(1^(@))/(2)`C. `15(1^(@))/(2)`D. `60^(@)`

Answer» Correct Answer - B
Use ` tan 45^(@)=1 and sin 60^(@)=(sqrt(3))/(2)`.
332.

Find the value of `4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(2)90^(@))`.A. `-(1)/(2)`B. `-2`C. `2`D. `(1)/(2)`

Answer» Correct Answer - B
Use trigonometric ratios values from table.
333.

Convert `180^(g)` into sexagesimal measure .

Answer» Given, `G=180^(g)`
We have, `(D)/(90)=(G)/(100)`
So, `(D)/(90)=(180)/(100)`
`D=(9)/(5)xx90=162`
Hence, sexagesimal measure of `180^(g)` is `162^(@)`
334.

The value of `(3 pi^( c))/(5)` in sexagesimal measure is ________A. `216^(@)`B. `144^(@)`C. `128^(@)`D. `108^(@)`

Answer» Correct Answer - D
Replace `pi^( c)` by `180^(@)`
335.

Find the measure of angle A, if `(2 sin A +1)(2 sin A-1)=0`A. `75^(@)`B. `60^(@)`C. `45^(@)`D. `30^(@)`

Answer» Correct Answer - D
Use `(a+b) (a-b)=a^(2)-b^(2)` and solve.
336.

If `sin A=(1)/(2) and 90^(@) lt A lt 180^(@)`, then the value of a in circular measure is ________A. `(pi)/(6)`B. `(pi)/(3)`C. `(5pi)/(6)`D. `(7pi)/(6)`

Answer» Correct Answer - C
Find the value of A and then multiply it by `(pi)/(180)`.
337.

If A and B are complementary angles, then the value of `(sin^(2)A + sin^(2)B)/("cosec"^(2)A-tan^(2)B)` is ________

Answer» Correct Answer - B
(i) `sin^(2)A=sin^(2)(90-B)`. If A and B complementary angles.
(ii) If `A+B=90^(@)`, then ` sin A = cos B and tan B= cot A`.
338.

Evaluate each of the following:sin 60° cos 30° + cos 60°sin 30°

Answer»

Given : sin 60° cos 30° + cos 60°sin 30°

To find : The value of sin 60° cos 30° + cos 60°sin 30°

Solution : Use the values:

sin 30 = \(\frac{1}{2}\), sin 60 = \(\frac{\sqrt3}{2}\),cos30 = \(\frac{\sqrt3}{2}\) and cos 60 = \(\frac{1}{2}\) 

sin 60° cos 30° + cos 60°sin 30°

Solve, \(\frac{\sqrt3}{2}\) x \(\frac{\sqrt3}{2}\) + \(\frac{1}{2}\) x \(\frac{1}{2}\)

\(\frac{3}{4}\) + \(\frac{1}{4}\) = 1 

Hence the value of sin 60° cos 30° + cos 60°sin 30° is 1.

339.

If `tan A=(1)/(2) and tan B=(1)/(3)`, then which of the following is true ?A. `A+B=(pi^( c))/(4)`B. `A-B=(pi^( c))/(4)`C. `2A+B=(pi^( c))/(4)`D. `A+2=(pi^( c))/(4)`

Answer» Correct Answer - A
Apply ` tan(A+B)=(tan A + tan B)/( 1- tan A tan B)`
340.

`sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=`A. `"cosec"^(2) theta `B. `1`C. `1+ cot theta `D. `1+ tan theta `

Answer» Correct Answer - C
`1+ sin 2 theta =( sin theta + cos theta )2, " when" theta in[0,(pi)/(4)]`.
341.

The value of `cos 2 theta ` in terms of `cot theta ` is ________A. `(cot^(2)theta+1)/(cot^(1)theta-1)`B. `(1+ cot^(2) theta)/(cot^(2)theta-1)`C. `(cot^(2)theta-1)/(cot^(2)theta+1)`D. `(1- cot^(2) theta )/(1+cot^(2) theta )`

Answer» Correct Answer - C
Use `cos 2 theta =(1- tan^(2) theta )/(1+ tan^(2) theta )`.
342.

The value of `sin theta ` in terms of `tan theta ` is _______A. `(tan theta )/(sqrt(1-tan^(2) theta))`B. `(tan^(2) theta )/(sqrt(1+tan^(2)theta))`C. `(tan^(2) theta )/(sqrt(1-tan^(2)theta))`D. `(tan theta )/(sqrt(1+tan^(2) theta))`

Answer» Correct Answer - D
Use `sec^(2) theta- tan^(2) theta=1`
343.

If `tan alpha=3 and tan beta=(1)/(2)`, then which of the following is true ?A. `alpha+beta=(pi^ c)/(4)`B. `alphabeta=(pi^(c ))/(4)`C. `alpha- beta=(pi^(c ))/(4)`D. None of these

Answer» Correct Answer - C
Use the identity `tan ( alpha+ beta )=( tan alpha+ tan beta )/(1- tan alpha tan beta )`
344.

If 8 tan A = 15, find sinA - cosA

Answer»

tan A = \(\frac{15}8\)

⇒ sin A = \(\frac{15}{17}\) and cos A = \(\frac{8}{17}\)

∴ sin A - cos A = \(\frac{15}{17}\) - \(\frac{8}{17}\) = \(\frac{7}{17}\)

345.

The simplified value of `sin^(4)alpha+cos^(4)alpha+(1)/(2) sin^(2) 2 alpha` isA. `-1`B. `sin alpha+ cos alpha`C. 0D. 1

Answer» Correct Answer - D
Use `a^(2)+b^(2)=(a+b)^(2)-2ab`.
346.

The value of `sin^(2) 60^(@)+cos^(2)30^(@)-sin^(2)45^(@)` is _________A. 1B. ` sin 90^(@)`C. `(1)/(2)`D. Both (a) and (b)

Answer» Correct Answer - D
Take the values of trigonometric ratios from the table.
347.

If `3 tan A=4`, then find the value of `(2 sinA-7 cos A)/(3 cosA+4)`.A. `(-13)/(29)`B. `(13)/(11)`C. `oo`D. `(29)/(13`

Answer» Correct Answer - A
Find `sinA, cos A` using trianlge `ABC`.
348.

The simplified value of `cosec^(2) alpha(1+(1)/(sec alpha))(1-(1)/(sec alpha))` is ______A. 1B. 0C. 2D. `-1`

Answer» Correct Answer - A
Use `(A+b)(a-b)=a^(2)-b^(2) and cos^(2) theta + sin^(2) theta=1`
349.

A wheel makes 240 revolution in one minutes. Find the measure of the angle it describes at the centre in 15 seconds.A. `60pi^(c )`B. `120pi^(c ) `C. `8 pi^(c )`D. None of these

Answer» Correct Answer - B
Use, 1 revolution `=2pi`
350.

In the adjoining figure, find the value of sin C.

Answer» Correct Answer - `(2sqrt(5))/(5)`