InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 251. |
Find the total number of solutions of the equation sin4 x + cos4 x = sin x cos x in [0, 2π]. |
|
Answer» Given sin4 x + cos4 x = sin x cos x ⇒ (sin2 x + cos2 x) 2 – 2 sin2 x cos2 x = sin x cos x ⇒ 1 - \(\frac{(2\,sinx\,cosx)^2}{2}\) = \(\frac{2\,sinx\,cosx}{2}\) ⇒ 1 – \(\frac{{sin}^2\,2x}{2}\) = \(\frac{sin\,2x}{2}\) ⇒ sin2 2x + sin 2x – 2 = 0 ⇒ (sin 2x + 2) (sin 2x – 1) = 0 ⇒ sin 2x = 1 ⇒ sin 2x = sin \(\frac{\pi}{2}\) = sin \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) ( ∵ sin 2x ≠ – 2 is indivisible) ⇒ 2x = \(\frac{\pi}{2}\) or \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) ⇒ 2x = \(\frac{\pi}{2}\) or \(\frac{5\pi}{2}\) ⇒ x = \(\frac{\pi}{4}\) or \(\frac{5\pi}{4}\) |
|
| 252. |
Solve for x, sin x = \(-\frac{\sqrt{3}}{2}\) , (0 < x < 2π) |
|
Answer» sin x = \(-\frac{\sqrt{3}}{2}\)= – sin 60° = sin (180° + 60°) = sin (360° – 60°) ⇒ x = 240°, 300°. |
|
| 253. |
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A. |
|
Answer» sin 3 A = cos (A − 26°) (given) or cos (90° – 3A) = cos (A – 26°) On comparing 90° – 3A = A – 26° A + 3A = 90° + 26° 4A = 116° = 29° The value of A is 29°. |
|
| 254. |
Solve cos2 θ – sin θ – \(\frac{1}{4}\) = 0 (0° < θ < 360°) |
|
Answer» cos2 θ – sin θ - \(\frac{1}{4}\) = 0 ⇒ 1 – sin2 θ – sin θ – \(\frac{1}{4}\) = 0 ⇒ 4 sin2 θ + 4 sin θ – 3 = 0 ⇒ (2 sin θ + 3) (2 sin θ – 1) = 0 ⇒ 2 sin θ + 3 = 0 or 2 sin θ – 1 = 0 ⇒ sin θ = - \(\frac{3}{2}\) or sin θ = \(\frac{1}{2}\) ⇒ θ = 30°, 150°. Since |sin θ| = \(\frac{3}{2}\) is > 1, the value sin θ = - \(\frac{3}{2}\) is inadmissible. ∴ θ = 30°, 150°. |
|
| 255. |
Solve 4 cos2 θ = 3 (0° < θ < 360°) |
|
Answer» 4 cos2θ = 3 ⇒ cos2 θ= \(\frac{3}{4}\) ⇒ cos θ= \(\pm \frac{\sqrt{3}}{2}\) cos θ = \( \frac{\sqrt{3}}{2}\) ⇒ θ = 30°, 330° (∵ cos θ is +ve and so θ lies in 1st and 4th quad.) cos θ = \(- \frac{\sqrt{3}}{2}\) ⇒ θ = 150°, 210° (∵ cos θ is –ve and so θ lies in 2nd and 3rd quad.) ⇒ θ = 30°, 150°, 210°, 330°. Note: if the value of θ is α when θ lies in the Ist quadrant then it is 180° – α |
|
| 256. |
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A. |
|
Answer» tan 2A = cot (A – 12°) or cot (90° – 2A) = cot (A – 12°) On comparing 90° – 2A = A – 12 ° A + 2A = 90° + 12° 3A = 102° A = 34° The value of A is 34° |
|
| 257. |
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A. |
|
Answer» sec 4A = cosec (A – 15°) or cosec (90° – 4A) = cosec (A – 15°) On comparing 90° – 4A = A – 15° A + 4A = 90° + 15° 5A = 105° A = 21° The value of A is 21°. |
|
| 258. |
Solve cos x – √3 sin x = 1, 0° < x < 360° |
|
Answer» Dividing both the sides of the equation cos x − √3 sin x = 1 by \(\sqrt{(1)^2 +(- \sqrt{3})^2}\) = 2 , we get \(\frac{1}{2}\) cos x - \(\frac{\sqrt{3}}{2}\) sin x = \(\frac{1}{2}\) ⇒ cos 60° cos x – sin 60° sin x = \(\frac{1}{2}\) ⇒ cos (x + 60°) = cos 60° ⇒ cos (x + 60°) = cos 60° = cos (360° – 60°) = cos (360° + 60°) ⇒ x + 60° = 60° or 300° or 420° ⇒ x = 0°, 240°, 360°. |
|
| 259. |
Solve \(\sqrt{3}\) sin θ – cos θ = \(\sqrt{2}\). |
|
Answer» Dividing both sides of the equation by \(\sqrt{(\sqrt{3})^2 +(-1)^2}\) = \(\sqrt{4}\) = 2, we get \(\frac{\sqrt{3}}{2}\) sin θ - \(\frac{1}{2}\) cos θ = \(\frac{1}{\sqrt{2}}\) ⇒ cos 30° sin θ – sin 30° cos θ = \(\frac{1}{\sqrt{2}}\) ⇒ sin (θ – 30°) = sin \(\big(\) θ - \(\frac{π}{6}\) \(\big)\) = \(\frac{1}{\sqrt{2}}\) ⇒ sin \(\big(\) θ - \(\frac{π}{6}\) \(\big)\) = sin \(\frac{π}{4}\) ⇒ θ - \(\frac{π}{6}\) = nπ +(-1)n \(\frac{π}{4}\) , n ∈ I ⇒θ = nπ + \(\frac{π}{4}\) + (− 1)n \(\frac{π}{4}\) , n ∈ I . |
|
| 260. |
If tan θ + sec θ = 4, then what is the value of sin θ? |
|
Answer» Given, tan θ + sec θ = 4 ⇒ \(\frac{sin\,\theta}{cos\,\theta}\)+ \(\frac{1}{cos\,\theta} = 4\) \(\frac{1+sin\,\theta}{cos\,\theta}=4\) ⇒ \(\frac{sin^2\frac{\theta}{2}+cos^2\frac{\theta}{2}+2sin\frac{\theta}{2}cos\frac{\theta}{2}}{(cos^2\frac{\theta}{2}-sin^2\frac{\theta}{2})}=4\) (Using the formulas sin2 θ + cos2 θ = 1, sin 2θ = 2sin θ cos θ, cos 2θ = cos2 – sin2θ) ⇒ \(\frac{\bigg(sin\frac{\theta}{2}+cos\frac{\theta}{2}\bigg)^2}{\bigg(cos\frac{\theta}{2}+sin\frac{\theta}{2}\bigg)\bigg(cos\frac{\theta}{2}-sin\frac{\theta}{2}\bigg)}=4\) ⇒\(\frac{\bigg(sin\frac{\theta}{2}+cos\frac{\theta}{2}\bigg)}{cos\frac{\theta}{2}-sin\frac{\theta}{2}}=4\) ⇒ \(\frac{1+tan\,\frac{\theta}{2}}{1-tan\,\frac{\theta}{2}}=4\) ⇒ 1 + tan\(\frac{\theta}{2}\) = 4 – 4 tan\(\frac{\theta}{2}\) ⇒ 5 tan\(\frac{\theta}{2}\) = 3 ⇒ tan\(\frac{\theta}{2}\) = \(\frac35\) ∴ sin θ = \(\frac{2\,tan\,\frac{\theta}{2}}{1+tan^2\,\frac{\theta}{2}}\) = \(\frac{2\times\frac35}{1+\frac{9}{25}}\) = \(\frac{\frac65}{\frac{34}{25}}\) = \(\frac{30}{34}\) = \(\frac{15}{17}.\) Alternatively, Given, tan θ + sec θ = 4 ...(i) sec2 = 1 + tan2 θ ⇒ sec2 θ – tan2 q = 1 ...(ii) eq. (ii) ÷ eq. (i) ⇒ sec θ – tan θ = \(\frac14\) ...(iii) eq. (i) + eq. (iii) ⇒ 2 sec θ = \(\frac{17}{4}\) ⇒ sec θ = \(\frac{17}{8}\) ⇒ cos θ = \(\frac{17}{8}\) Now, use sin θ = \(\sqrt{1-cos^2\,\theta}\) |
|
| 261. |
Solve cos 3x + cos 2x = sin \(\frac{3}{2}\)x + sin\(\frac{1}{2}\)x , 0 < x ≤ π . |
|
Answer» cos 3x + cos 2x = sin\(\frac{3}{2}\)x + sin \(\frac{1}{2}\)x ⇒ 2 cos \(\frac{5}{2}\)x cos \(\frac{x}{2}\) = 2 sin x cos\(\frac{x}{2}\) ⇒ cos\(\frac{x}{2}\) \(\big[\) cos\(\frac{5x}{2}\) - sin x \(\big]\) = 0 ⇒ cos \(\frac{x}{2}\) = 0 or cos\(\frac{5x}{2}\) - sin x = 0 Now cos\(\frac{5x}{2}\) = 0 ⇒ \(\frac{x}{2}\) = \(\frac{\pi}{2}\) ⇒ x = π and cos\(\frac{5x}{2}\) - sin x = 0 ⇒ cos \(\frac{5x}{2}\) = sin x ⇒ cos \(\frac{5x}{2}\) = cos( \(\frac{\pi}{2}\) - x ) or sin (2π + \(\frac{\pi}{2}\) -x) ⇒ \(\frac{5x}{2}\) = \(\frac{\pi}{2}\) - x or, \(\frac{5x}{2}\) = 2π + \(\frac{\pi}{2}\) - x ⇒\(\frac{7}{2}\)x = \(\frac{π}{2}\) or \(\frac{7x}{2}\) = \(\frac{5π}{2}\) ⇒ x = \(\frac{\pi}{7}\) or \(\frac{5\pi}{7}\) ∴ x = \(\frac{\pi}{7}\) , \(\frac{5\pi}{7}\) or π |
|
| 262. |
Solve tan 3x = cot 5x (0 < x < 2π). |
|
Answer» tan 3x = tan \(\big(\) \(\frac{\pi}{2}\) - 5x \(\big)\) ⇒ 3x = nπ + \(\big(\) \(\frac{\pi}{2}\) - 5x \(\big)\) (∵ tan θ = tan α ⇒ θ = nπ + α) ⇒ 8x = (2n + 1)\(\frac{\pi}{2}\) ⇒ x = (2n + 1) \(\frac{\pi}{16}\) ∴ Putting n = 0, 1, 2, ..... 15, we see that the values of x between 0 and 2π are x = \(\frac{\pi}{16}\) ,\(\frac{3\pi}{16}\) , \(\frac{5\pi}{16}\) ,..., \(\frac{31\pi}{16}\). |
|
| 263. |
If 2sin2 θ + 3sin θ = 0, find the permissible values of cosθ. |
|
Answer» 2sin2 θ + 3sin θ = 0 ∴ sin θ (2sin θ + 3) = 0 ∴ sin θ = 0 or sin θ = \(\frac {-3}{2}\) Since – 1 ≤ sin θ ≤ 1, sin θ = 0 \(\sqrt{1-\cos^2 \theta} =0\)...[∴ sin2 θ = 1-cos2θ] ∴ 1- cos2θ = 0 ∴ cos2θ = 1 ∴ cos θ = ±1 …[∵ – 1 ≤ cos θ ≤ 1] |
|
| 264. |
Find the general solution of |sin x| = cos x, n∈I |
|
Answer» Given : |sin x| = cos x ⇒ sin2 x = cos2x ⇒ 1 – cos2 x = cos2 x ⇒ 2 cos2 x = 1 ⇒ cos x = + \(\frac{1}{\sqrt{2}}\) [∵ cos x = |sin x|, it cannot be negative] ⇒ cos x = cos \(\frac{\pi}{4}\) ⇒ x = 2nπ ± \(\frac{\pi}{4}\) |
|
| 265. |
Find the number of solutions of the equation tan x + sec x = 2 cos x, x∈ [0, π]. |
|
Answer» tan x + sec x = 2 cos x ⇒ \(\frac{sin\,x}{cos\,x}\) + \(\frac{1}{cos\,x}\) = 2 cos x ⇒ 1 + sin x = 2 cos2 x ⇒ 1 + sin x = 2 (1 – sin2 x) = 2 – 2 sin2 x ⇒ 2 sin2 x + sin x – 1 = 0 ⇒ (sin x + 2) (2 sin x – 1) = 0 ⇒ (sin x + 2) = 0 or 2 sin x = 1 ⇒ sin x = –2 or sin x = \(\frac{1}{2}\) Since sin x = – 2 is inadmissible, therefore, sin x = \(\frac{1}{2}\) ⇒ x = 30°, 150°, i.e. x = \(\frac{π}{6}\) ,\(\frac{5π}{6}\). ∴ The number of solutions x ∈[0, π] are 2. |
|
| 266. |
Find the general solution of sin 9θ = sin θ. |
|
Answer» sin 9θ = sin θ ⇒ 9θ = 2nπ + θ or 9θ = (2n + 1) π - θ, n∈I (∵ sin θ = sin α ⇒ θ = nπ + (–1)n α, where n∈I) ⇒ θ = \(\frac{2n\pi}{8}\) or θ = \(\frac{(2n+1)\pi}{10}\) ⇒ θ = \(\frac{n\pi}{4}\) or \(\frac{(2n+1)\pi}{10}\) |
|
| 267. |
Let 0 < A, B < π/2 satisfying the equation 3sin2 A + 2sin2 B = 1 and 3sin 2A – 2sin 2B = 0, then A + 2B is equal to ________(a) π(b) π/2(c) π/4(d) 2π |
|
Answer» Correct option is (b) π/2 3 sin 2A – 2sin 2B = 0 sin 2B = 3/2 sin 2A …….(i) 3 sin2 A + 2 sin2 B = 1 3 sin2 A = 1 – 2 sin2 B 3 sin2 A = cos 2B ……(ii) cos(A + 2B) = cos A cos 2B – sin A sin 2B = cos A (3 sin2 A) – sin A (3/2 sin 2A) …..[From (i) and (ii)] = 3 cos A sin2 A – 3/2 (sin A) (2 sin A cos A) = 3 cos A sin2 A – 3 sin2 A cos A = 0 = cos π/2 ∴ A + 2B = π/2 ……..[∵ 0 < A + 2B < 3π/2] |
|
| 268. |
The value of tan 30°/cot 60° is(A)1/√2 (B)1/√3 (C) √3 (D) 1 |
|
Answer» Correct answer is (D) 1 |
|
| 269. |
If cos A = 4/5 , then the value of tan A is (A) 3/5 (B) 3/4 (C) 4/3 (D) 5/3 |
|
Answer» Correct answer is (B) 3/4 |
|
| 270. |
If sin A = 1/2 , then the value of cot A is (A) √3 (B) 1/√3 (C) √3/2 (D) 1 |
|
Answer» Correct answer is (A) √3 |
|
| 271. |
The value of (sin 45° + cos 45°) is (A) 1/√2 (B) √2 (C) √3/2 (D) 1 |
|
Answer» Correct answer is (B) √2 |
|
| 272. |
If sin θ + cos θ = √3 , then prove that tan θ + cot θ = 1 |
|
Answer» Solution : sin θ + cos θ = √3 (Given) or (sin θ + cos θ)2 = 3 or sin2 θ + cos2θ + 2sinθ cosθ = 3 2sinθ cosθ = 2 [sin2θ + cos2θ = 1] or sin θ cos θ = 1 = sin2θ + cos2θ or 1 = (sin2θ + cos2θ)/sin θ cos θ Therefore, tanθ + cotθ = 1 |
|
| 273. |
What is Line of Sight? |
|
Answer» It is an imaginary line drawn from the eye of the observer to the point of the object viewed by the observer. |
|
| 274. |
What is line of Sight? |
|
Answer» It is an imaginary line drawn from the eye of the observer to the point of the object viewed by the observer. |
|
| 275. |
If sin A = 24/25, then sec A = ………A) 7/25B) 25/7C) 24/7D) 7/24 |
|
Answer» Correct option is: B) \(\frac{25}{7}\) Sin A = \(\frac {24}{25}\) \(\therefore\) cos A = \(\sqrt {1-sin^2A}\) = \(\sqrt{1-(\frac {24}{25})^2}\) = \(\sqrt {\frac {25^2 - 24^2}{25^2}}\) = \(\sqrt {\frac {625 - 576}{25}}\) = \(\sqrt {\frac {49}{25}} = \frac 7{25}\) \(\therefore\) Sec A = \(\frac 1{Cos\,A} = \frac {1} {\frac 7{25}} = \frac {25}7\) Correct option is: B) \(\frac{25}{7}\) |
|
| 276. |
Values of sin 30°, sin 90°, sec 60° are in ………… A) A.P. B) G.P. C) a D) (A)or(C) |
|
Answer» Correct option is: B) G.P. Sin \(30^\circ\) = \(\frac 12\) sin \(90^\circ\) = 1 and sec \(60^\circ\) = 2 \(\because\) \(\frac 12\), 1 & 2 are in G.P \(\therefore\) sin \(30^\circ\), sin \(90^\circ\) & sec \(60^\circ\) are in G.P Correct option is: B) G.P. |
|
| 277. |
If `a=sectheta-tantheta and b= sectheta+tantheta`, thenA. `a=b`B. `(1)/(a)=(-1)/(b)`.C. `a=(1)/(b)`.D. `a-b=1` |
|
Answer» Correct Answer - C Use the identity `sec^(2)theta-tan^(2)theta=1`. |
|
| 278. |
If `sin^(4)A-cos^(4)A=1,then (A//2)`is ______.`(0ltAle90^(@))`.A. `45^(@)`B. `60^(@)`C. `30^(@)`D. `40^(@)` |
|
Answer» Correct Answer - A `a^(4)-b^(4)=(a^(2)-b^(2))(a^(2)+b^(2))`. |
|
| 279. |
If `secalpha+tanalpha=m, " then " sec^(4)alpha-tan^(4)alpha-2sec alpha tan alpha` is ___________.A. `m^(2)`B. `-m^(2)`C. `(1)/(m^(2))`D. `(-1)/(m^(2))` |
|
Answer» Correct Answer - C Simplify the given expression and find `secalpha-tanalpha`. |
|
| 280. |
A vertiacal pole is 60 m high, The angle of depression of two points P and Q on the ground are `30^(@) and 45^(@)` respectively. If the points P and Q lie on either side of the pole, then find the distance PQ. |
| Answer» Correct Answer - `60(sqrt3+1)m` | |
| 281. |
`tan38^(@)-cot22^(@)`= _________.A. `(1)/(2)cosec38^(@)sec22^(@)`B. `2 sin22^(@)cos38^(@)`C. `-(1)/(2) cosec22^(@)sec38^(@)`D. None of these |
|
Answer» Correct Answer - D (i) Convert the given trignometric value in terms of `sintheta, costheta`, then simplify to obtain the required value. Use the formula, cost `(A+B)=cosA*cosB-sinA*sinB`. |
|
| 282. |
If `x^n=a^m cos^4 theta ` and `y^n = b^m sin^4 theta` then `(i) (x^(n/2))/(a^(m/2))+ (y^(n/2))/(b^(m/2))=1` `(ii) x^n/a^m+y^n/b^m=1`(iii) `(x^(n/2))/(y^(n/2))+ (a^(m/2))/(y^(m/2))=1` (iv) None of theseA. `(x^(n//2))/(a^(m//2))+(y^(n//2))/(b^(m//2))=1`B. `(x^(n))/(a^(m))+(y^(n))/(b^(m))=1`C. `(x^(n//2))/(y^(n//2))+(a^(m//2))/(b^(m//2))=1`D. None of these |
|
Answer» Correct Answer - A `x^(n)=a^(m)cos^(4)theta, and y^(n)=b^(m)sin^(4)theta` `implies cos^(4)theta=(x^(n))/(a^(m)) and sin^(4) theta =(y^(n))/(b^(m))` `implies cos^(2) theta=(x^(n//2))/(a^(m//2)), sin^(4) theta=(y^(n//2))/(b^(m//2))` But, `sin^(2)theta+cos^(2)theta=1` `:. (x^(n//2))/(a^(m//2))+(y^(n//2))/(b^(m//2))=1` |
|
| 283. |
If `tan theta - cot theta =7`, then the value of `tan^(3)theta-cot^(3)theta` isA. 250B. 354C. 343D. 364 |
|
Answer» Correct Answer - D Given, ` tan theta- cot theta=7`. We know that , `a^(3)-b^(3)=(a-b)^(3)+3ab(a-b)` `tan^(3) theta-cot^(3) theta=(tan theta- cot theta)^(3)+3 tan theta cot theta (tan theta - cot theta )` `=7^(3)+3(7)=343+21=364`. |
|
| 284. |
If `(1+tan theta )/(1- tan theta)=sqrt(3)` , then find the value of `theta`.A. `30^(@)`B. `25^(@)`C. `15^(@)`D. `45^(@)` |
|
Answer» Correct Answer - C `(1+tan theta)/(1- theta)=sqrt(3)` `(tan45^(@)+tan theta)/(1- tan 45^(@)*tan theta )=sqrt(3)`. `tan(45^(@)+ theta)- tan 60^(@)` `implies 45^(@)+ theta=60^(@)` `theta=60^(@)-45^(@)=15^(@)`. |
|
| 285. |
Prove that sin (A + B) sin (A – B) = cos2 B – cos2 A |
|
Answer» LHS = sin (A + B) sin (A – B) = (sin A cos B + cos A sin B) (sin A cos B – cos A sin B) = sin2 A cos2 B – cos2 A sin2 B = (1 – cos2 A) cos2 B – cos2 A (1 – cos2 B) = cos2 B – cos2 A cos2 B – cos2 A + cos2 A cos2 B = cos2 B – cos2 A = RHS |
|
| 286. |
Prove that: (i) tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.(ii) 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7\pi}{6}\) cos2 \(\frac{\pi}{3}\)= \(\frac{3}{2}\)(iii) sec(\(\frac{3\pi}{2}-\theta\)) sec(\(\theta-\frac{5\pi}{2}\)) + tan(\(\frac{5\pi}{2}+\theta\)) tan(\(\theta-\frac{5\pi}{2}\)) = - 1 |
|
Answer» (i) tan(-225°) = -(tan 225°) = -(tan(180° + 45°)) = – tan 45° = – 1 cot(-405°) = -(cot 405°) = – cot(360° + 45°) [∵ For 360° + 45° no change in T-ratio.] = -cot 45° = -1 tan(-765°) = -tan 765° = -tan(2 x 360° + 45°) = -tan 45° = -1 cot 675° = cot (360°+ 315°) = cot 315° = cot(360° – 45°) = -cot 45° = -1 LHS = tan(-225°) cot(-405°) – tan(-765°) cot(675°) = (-1) (-1) – (-1) (-1) = 1 – 1 = 0 = RHS. Hence proved. (ii) 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7\pi}{6}\) cos2 \(\frac{\pi}{3}\)= \(\frac{3}{2}\) LHS = 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7\pi}{6}\) cos2 \(\frac{\pi}{3}\)= \(\frac{3}{2}\) [∵ \(\frac{7\pi}{6}\)= 210°, 210° = 180° + 30°. For 180° + 30° no change in T-ratio. 210° lies in 3rd quadrant, cosec θ is negative.] = 2(sin\(\frac{\pi}{6}\))2 + (cosec (180° + 30°))2 (cos\(\frac{\pi}{3}\))2 = 2(\(\frac{1}{2}\))2 + (-cosec 30°)2.(\(\frac{1}{2}\))2 = 2 x \(\frac{1}{4}+(-2)^2\frac{1}{4}\) = \(\frac{2}{4}+\frac{4}{4}=\frac{6}{4}\) = \(\frac{6}{4}\) = \(\frac{3}{2}\) = RHS (iii) sec(\(\frac{3\pi}{2}-\theta\)) = sec (270° – θ) = -cosec θ [∵ For 270° – θ change T-ratio. So add ‘co’ infront ‘sec’, it becomes ‘cosec’] sec(θ – \(\frac{5\pi}{2}\)) = sec(-(\(\frac{5\pi}{2}\) - θ)) = sec(\(\frac{5\pi}{2}\) – θ) [∵ sec(-θ) = θ] = sec(450° – θ) = sec (360° + (90° – θ)) = sec (90° – θ) = cosec θ [∵ For 90° – θ change in T-ratio. So add ‘co’ in front of ‘sec’ it becomes ‘cosec’] tan(\(\frac{5\pi}{2}\) + θ) = tan(450° + θ) [∵ For 90° + θ, change in T-ratio. So add ‘co’ in front of ‘tan’ it becomes ‘cot’] = tan (360° + (90° + θ)) = tan (90° + θ) = -cot θ tan(\(\theta-\frac{5\pi}{2}\)) = tan(-(\(\frac{5\pi}{2}\) - θ)) = - tan (\(\frac{5\pi}{2}\) - θ) [∵ tan(-θ) = -tan θ] = -tan(450° – θ) = -tan(360° + (90° – θ)) = -tan(90° – θ) = -cot θ LHS = sec(\(\frac{3\pi}{2}-\theta\)) sec(\(\theta-\frac{5\pi}{2}\)) + tan(\(\frac{5\pi}{2}+\theta\)) tan(\(\theta-\frac{5\pi}{2}\)) = -cosec θ (cosec θ) + (-cot θ) (-cot θ) = -cosec2 θ + cot2 θ = -(1 + cot2 θ) + cot2 θ [∵ 1 + cot2 θ = cosec2 θ] = -1 = RHS |
|
| 287. |
Simplify `sin(A+45^(@))sin(A-45^(@))`. |
| Answer» Correct Answer - `-(1)/(2)cos2A` | |
| 288. |
If `cottheta=(4)/(3) and theta` is acute, then find the value of `(tantheta+cottheta)/(sectheta+cosectheta)`. |
| Answer» Correct Answer - `(5)/(7)` | |
| 289. |
The `(3pi)/(2)` is equivalent to ___________in centesimal system. |
| Answer» Correct Answer - `300^(g)` | |
| 290. |
Write an equation eliminating theta from the equations a = d `sintheta and c = d costheta`. |
| Answer» Correct Answer - `a^(2)+c^(2)=d^(2)` | |
| 291. |
If `tantheta+cottheta=2, then tan^(10)theta+cot^(10)theta`=___________`(" Where " 0 ltthetalt90^(@))`. |
| Answer» Correct Answer - 2 | |
| 292. |
Find the value of `sin15^(@)` |
|
Answer» We have, ` sin15^(@)=sin(45^(@)-30^(@))=sin45^(@) cos 30^(@)-cos45^(@) sin30^(@)` `=(1)/(sqrt(2))xx(sqrt(3))/(2)-(1)/(sqrt(2))xx(1)/(2)=(sqrt(3)-1)/(2sqrt(2))` `:. sin15^(@)=(sqrt(3)-1)/(2sqrt(2))`. |
|
| 293. |
Find the value of tan `75^(@)`. |
|
Answer» We have, `tan75^(@)=tan(45^(@)+30^(@))` `(tan45^(@)+tan30^(@))/(1- tan45^(@)*tan30^(@))` `=(1+(1)/(sqrt(3)))/(1-1xx(1)/(sqrt(3)))=(sqrt(3)+1)/(sqrt(3)-1)` `((sqrt(3)+1)/(sqrt(3)-1))((sqrt(3)+1)/(sqrt(3)+1))=(3+1+2sqrt(3))/(2)=2+sqrt(3)` `:. tan 75^(@)=(sqrt(3+1))/(sqrt(3-1)) or 2+sqrt(3)`. |
|
| 294. |
Eliminate `theta` from the equation , `a=x sin theta-y cos theta and b= x cos theta + y sin theta`. |
| Answer» Correct Answer - `x^(2)+y^(2)=a^(2) + b^(2)` | |
| 295. |
The angle of depression of the top of the tower from the top of a building is `30^(@)` and angle of elevation of the top of the tower from the bottom of the building is `45^(@)` and if the height of the tower is 20 m, then find the height of the building. |
| Answer» Correct Answer - `(20(1+sqrt3))/(sqrt3)m` | |
| 296. |
Eliminate `theta` from the equation `a=x sec theta and b=y tan theta `. |
|
Answer» We know that trigonmetric ratios are meaningful when they are associated with some `theta` , i.e., we cannot imagine any trigonometric ratio without `theta`. Eliminate `theta` means, eliminating the trigonometric ratios by using suitable identity. Given , `a=x sec theta and b=y tan theta ` `(a)/(x) =sec theta and (b)/(y)=tan theta ` We know that `, sec^(2) theta-tan^(2) theta=1`. So,`((a)/(x))^(2)=((b)/(y))^(2)=1` `(a^(2))/(x^(2))-(b^(2))/(y^(2))=1`. Hence, the required equation is `(a^(2))/(x^(2))-(b^(2))/(y^(2))=1`. |
|
| 297. |
If ` sin (A+B)=(sqrt(3))/(2)` and cosec A=2, then find A and B. |
|
Answer» Given , `sin(A+B)=(sqrt(3))/(2)` `sin(A+B)=sin60^(@)` `A+B=60^(@)" " ` (1) `"cose"A=2="cosec"30^(@)` `A=30^(@) " "`(2) From Eqs. (1) and (2) , we have `A=30^(@) and B=30^(@)` |
|
| 298. |
Eliminate `theta` from the following equations: `x sin alpha + ycosalpha = p and x cos alpha-y sin alpha = q` |
| Answer» Correct Answer - `x^(2)+y^(2)=p^(2)+q^(2)` | |
| 299. |
Find the relation obtained by eliminating `theta` from the equations `x=a cos theta+b sin theta` and `y=a sin theta- b sin theta`. |
|
Answer» Given, `x=a cos theta + b sin theta ` `x^(2)=(a cos theta + b sin theta )^(2)` `=a^(2)cos^(2)theta+b^(2)sin^(2)theta+2ab cos theta sin theta ` Also `y=a sin theta - b cos theta` `y^(2)=a^(2)sin^(2)theta+b^(2)cos^(2) theta-2 ab sin theta cos theta ` `x^(2)+y^(2)=a^(2)(sin^(2) theta + cos^(2) theta)+b^(2)(cos^(2)theta+sin^(2) theta )` `=a^(2)+b^(2)` Hence, the required relation is `x^(2)+y^(2)=a^(2)+b^(2)`. |
|
| 300. |
Eliminate `theta` from the equation `P=a "cosec" theta nd Q=a cot theta`. |
|
Answer» Given , `P= a " cosec" theta and Q=a cot theta ` `(P)/(a)="cosec" theta and (Q)/(a)= cot theta `. We know that , `"cosec"^(2)theta- cot^(2)theta=1` `((P)/(a))^(2)-((Q)/(a))^(2)=1` Hene, the required relation is `P^(2)-Q^(2)=a^(2)`. |
|