Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

Find the total number of solutions of the equation sin4 x + cos4 x = sin x cos x in [0, 2π].

Answer»

Given

sin4 x + cos4 x = sin x cos x

⇒ (sin2 x + cos2 x) 2 – 2 sin2 x cos2 x = sin x cos x 

⇒ 1 - \(\frac{(2\,sinx\,cosx)^2}{2}\) = \(\frac{2\,sinx\,cosx}{2}\)

⇒ 1 – \(\frac{{sin}^2\,2x}{2}\) = \(\frac{sin\,2x}{2}\)

⇒ sin2 2x + sin 2x – 2 = 0 

⇒ (sin 2x + 2) (sin 2x – 1) = 0 

⇒ sin 2x = 1

⇒ sin 2x = sin \(\frac{\pi}{2}\) = sin \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) ( ∵ sin 2x ≠ – 2 is indivisible)

⇒ 2x = \(\frac{\pi}{2}\) or  \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) 

⇒ 2x = \(\frac{\pi}{2}\) or \(\frac{5\pi}{2}\) 

⇒ x = \(\frac{\pi}{4}\) or \(\frac{5\pi}{4}\)

252.

Solve for x, sin x = \(-\frac{\sqrt{3}}{2}\) , (0 < x < 2π)

Answer»

sin x = \(-\frac{\sqrt{3}}{2}\)= – sin 60° 

= sin (180° + 60°) 

= sin (360° – 60°)

x = 240°, 300°.

253.

If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.

Answer»

sin 3 A = cos (A − 26°) (given)

or cos (90° – 3A) = cos (A – 26°)

On comparing

90° – 3A = A – 26°

A + 3A = 90° + 26°

4A = 116° = 29°

The value of A is 29°.

254.

Solve cos2 θ – sin θ – \(\frac{1}{4}\) = 0 (0° < θ < 360°)

Answer»

cos2 θ – sin θ - \(\frac{1}{4}\) = 0 

⇒ 1 – sin2 θ – sin θ – \(\frac{1}{4}\)  = 0 

⇒ 4 sin2 θ + 4 sin θ – 3 = 0 

⇒ (2 sin θ + 3) (2 sin θ – 1) = 0 

⇒ 2 sin θ + 3 = 0 or 2 sin θ – 1 = 0 

⇒ sin θ = - \(\frac{3}{2}\) or sin θ = \(\frac{1}{2}\) 

⇒ θ = 30°, 150°. 

Since |sin θ| = \(\frac{3}{2}\) is > 1, the value sin θ = - \(\frac{3}{2}\) is inadmissible. 

∴ θ = 30°, 150°.

255.

Solve 4 cos2 θ = 3 (0° < θ < 360°)

Answer»

4 cos2θ = 3 

⇒ cos2 θ= \(\frac{3}{4}\) 

⇒ cos θ= \(\pm \frac{\sqrt{3}}{2}\)

cos θ = \( \frac{\sqrt{3}}{2}\) ⇒ θ = 30°, 330° (∵ cos θ is +ve and so θ lies in 1st and 4th quad.) 

cos θ = \(- \frac{\sqrt{3}}{2}\)  ⇒ θ = 150°, 210° (∵ cos θ is –ve and so θ lies in 2nd and 3rd quad.) 

⇒ θ = 30°, 150°, 210°, 330°. 

Note: if the value of θ is α when θ lies in the Ist quadrant then it is 180° – α
, 180° + α and 360° – α, If θ lies in 2nd, 3rd, and 4th quadrant respectively.

256.

If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.

Answer»

tan 2A = cot (A – 12°)

or cot (90° – 2A) = cot (A – 12°)

On comparing

90° – 2A = A – 12 °

A + 2A = 90° + 12°

3A = 102°

A = 34°

The value of A is 34°

257.

If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.

Answer»

sec 4A = cosec (A – 15°)

or cosec (90° – 4A) = cosec (A – 15°)

On comparing

90° – 4A = A – 15°

A + 4A = 90° + 15°

5A = 105°

A = 21°

The value of A is 21°.

258.

Solve cos x – √3 sin x = 1, 0° < x < 360°

Answer»

Dividing both the sides of the equation cos x − √3 sin x = 1 by

\(\sqrt{(1)^2 +(- \sqrt{3})^2}\) = 2 , we get

\(\frac{1}{2}\) cos x - \(\frac{\sqrt{3}}{2}\) sin x = \(\frac{1}{2}\) 

⇒ cos 60° cos x – sin 60° sin x = \(\frac{1}{2}\) 

⇒ cos (x + 60°) = cos 60° 

⇒ cos (x + 60°) = cos 60° = cos (360° – 60°) = cos (360° + 60°) 

⇒ x + 60° = 60° or 300° or 420° 

⇒ x = 0°, 240°, 360°.

259.

Solve \(\sqrt{3}\) sin θ – cos θ = \(\sqrt{2}\).

Answer»

Dividing both sides of the equation by

\(\sqrt{(\sqrt{3})^2 +(-1)^2}\) = \(\sqrt{4}\) = 2, we get \(\frac{\sqrt{3}}{2}\) sin θ - \(\frac{1}{2}\) cos θ = \(\frac{1}{\sqrt{2}}\)

⇒ cos 30° sin θ – sin 30° cos θ = \(\frac{1}{\sqrt{2}}\)

⇒ sin (θ – 30°) = sin \(\big(\) θ - \(\frac{π}{6}\) \(\big)\) = \(\frac{1}{\sqrt{2}}\) 

⇒ sin  \(\big(\) θ - \(\frac{π}{6}\) \(\big)\) = sin \(\frac{π}{4}\) 

⇒ θ - \(\frac{π}{6}\) = nπ +(-1)n \(\frac{π}{4}\) , n ∈ I 

⇒θ = nπ + \(\frac{π}{4}\) + (− 1)n \(\frac{π}{4}\) , n ∈ I .

260.

If tan θ + sec θ = 4, then what is the value of sin θ?

Answer»

Given, tan θ + sec θ = 4

⇒ \(\frac{sin\,\theta}{cos\,\theta}\)\(\frac{1}{cos\,\theta} = 4\) \(\frac{1+sin\,\theta}{cos\,\theta}=4\)

⇒ \(\frac{sin^2\frac{\theta}{2}+cos^2\frac{\theta}{2}+2sin\frac{\theta}{2}cos\frac{\theta}{2}}{(cos^2\frac{\theta}{2}-sin^2\frac{\theta}{2})}=4\)

(Using the formulas sin2 θ + cos2 θ = 1, sin 2θ = 2sin θ cos θ, cos 2θ = cos2 – sin2θ)

⇒ \(\frac{\bigg(sin\frac{\theta}{2}+cos\frac{\theta}{2}\bigg)^2}{\bigg(cos\frac{\theta}{2}+sin\frac{\theta}{2}\bigg)\bigg(cos\frac{\theta}{2}-sin\frac{\theta}{2}\bigg)}=4\)

\(\frac{\bigg(sin\frac{\theta}{2}+cos\frac{\theta}{2}\bigg)}{cos\frac{\theta}{2}-sin\frac{\theta}{2}}=4\) ⇒ \(\frac{1+tan\,\frac{\theta}{2}}{1-tan\,\frac{\theta}{2}}=4\)

⇒ 1 + tan\(\frac{\theta}{2}\) = 4 – 4 tan\(\frac{\theta}{2}\) ⇒ 5 tan\(\frac{\theta}{2}\) = 3 ⇒ tan\(\frac{\theta}{2}\) = \(\frac35\)

∴ sin θ = \(\frac{2\,tan\,\frac{\theta}{2}}{1+tan^2\,\frac{\theta}{2}}\) = \(\frac{2\times\frac35}{1+\frac{9}{25}}\) = \(\frac{\frac65}{\frac{34}{25}}\) = \(\frac{30}{34}\) = \(\frac{15}{17}.\)

Alternatively, 

Given, tan θ + sec θ = 4                ...(i) 

sec2  = 1 + tan2 θ 

⇒ sec2 θ – tan2 q = 1                 ...(ii) 

eq. (ii) ÷ eq. (i) 

⇒ sec θ – tan θ = \(\frac14\)         ...(iii) 

eq. (i) + eq. (iii) 

⇒ 2 sec θ = \(\frac{17}{4}\) ⇒ sec θ = \(\frac{17}{8}\) 

⇒ cos θ = \(\frac{17}{8}\)

Now, use sin θ = \(\sqrt{1-cos^2\,\theta}\)

261.

Solve cos 3x + cos 2x = sin \(\frac{3}{2}\)x + sin\(\frac{1}{2}\)x , 0 < x ≤ π .

Answer»

cos 3x + cos 2x = sin\(\frac{3}{2}\)x + sin \(\frac{1}{2}\)

⇒ 2 cos \(\frac{5}{2}\)x cos \(\frac{x}{2}\) = 2 sin x cos\(\frac{x}{2}\)

⇒ cos\(\frac{x}{2}\) \(\big[\) cos\(\frac{5x}{2}\) - sin x \(\big]\) = 0 

⇒ cos \(\frac{x}{2}\) = 0 or cos\(\frac{5x}{2}\) - sin x = 0

Now cos\(\frac{5x}{2}\) = 0 ⇒ \(\frac{x}{2}\) = \(\frac{\pi}{2}\) ⇒ x = π

and cos\(\frac{5x}{2}\) - sin x = 0

⇒ cos \(\frac{5x}{2}\) = sin x 

⇒ cos \(\frac{5x}{2}\) = cos( \(\frac{\pi}{2}\) - x )  or sin (2π + \(\frac{\pi}{2}\) -x)

⇒ \(\frac{5x}{2}\) = \(\frac{\pi}{2}\) - x or, \(\frac{5x}{2}\) = 2π +  \(\frac{\pi}{2}\) - x 

\(\frac{7}{2}\)x = \(\frac{π}{2}\)  or \(\frac{7x}{2}\) = \(\frac{5π}{2}\) 

⇒ x = \(\frac{\pi}{7}\) or \(\frac{5\pi}{7}\)

∴ x = \(\frac{\pi}{7}\) , \(\frac{5\pi}{7}\) or π

262.

Solve tan 3x = cot 5x (0 < x < 2π).

Answer»

tan 3x = tan \(\big(\) \(\frac{\pi}{2}\) - 5x \(\big)\) 

⇒ 3x = nπ + \(\big(\) \(\frac{\pi}{2}\) - 5x \(\big)\)  (∵ tan θ = tan α ⇒ θ = nπ + α)

⇒ 8x = (2n + 1)\(\frac{\pi}{2}\)  ⇒ x = (2n + 1) \(\frac{\pi}{16}\) 

∴  Putting n = 0, 1, 2, ..... 15, we see that the values of x between 0 and 2π are

x = \(\frac{\pi}{16}\) ,\(\frac{3\pi}{16}\) , \(\frac{5\pi}{16}\) ,..., \(\frac{31\pi}{16}\).

263.

If 2sin2 θ + 3sin θ = 0, find the permissible values of cosθ.

Answer»

2sin2 θ + 3sin θ = 0 

∴ sin θ (2sin θ + 3) = 0 

∴ sin θ = 0 or sin θ = \(\frac {-3}{2}\)

Since – 1 ≤ sin θ ≤ 1, 

sin θ = 0

\(\sqrt{1-\cos^2 \theta} =0\)...[∴ sin2 θ = 1-cos2θ]

∴ 1- cos2θ = 0

∴ cos2θ = 1

∴ cos θ = ±1 …[∵ – 1 ≤ cos θ ≤ 1]

264.

Find the general solution of |sin x| = cos x, n∈I

Answer»

Given :

|sin x| = cos x 

⇒ sin2 x = cos2

⇒ 1 – cosx = cos

⇒ 2 cosx = 1 

⇒ cos x = + \(\frac{1}{\sqrt{2}}\) [∵ cos x = |sin x|, it cannot be negative] 

⇒ cos x = cos \(\frac{\pi}{4}\) 

⇒ x = 2nπ ± \(\frac{\pi}{4}\)

265.

Find the number of solutions of the equation tan x + sec x = 2 cos x, x∈ [0, π].

Answer»

tan x + sec x = 2 cos x

⇒ \(\frac{sin\,x}{cos\,x}\) + \(\frac{1}{cos\,x}\) = 2 cos x

⇒ 1 + sin x = 2 cos

⇒ 1 + sin x = 2 (1 – sinx) 

= 2 – 2 sin

⇒ 2 sinx + sin x – 1 = 0 

⇒ (sin x + 2) (2 sin x – 1) = 0 

⇒ (sin x + 2) = 0 or 2 sin x = 1 ⇒ sin x = –2 or sin x = \(\frac{1}{2}\) 

Since sin x = – 2 is inadmissible, therefore, sin x = \(\frac{1}{2}\) 

⇒ x = 30°, 150°, i.e. x = \(\frac{π}{6}\)  ,\(\frac{5π}{6}\).

∴ The number of solutions x ∈[0, π] are 2.

266.

Find the general solution of sin 9θ = sin θ.

Answer»

 sin 9θ = sin θ 

⇒ 9θ = 2nπ + θ or 9θ = (2n + 1) π - θ, n∈I (∵ sin θ = sin α ⇒ θ = nπ + (–1)n α, where n∈I)

⇒ θ = \(\frac{2n\pi}{8}\) or θ = \(\frac{(2n+1)\pi}{10}\) 

⇒ θ\(\frac{n\pi}{4}\) or \(\frac{(2n+1)\pi}{10}\)

267.

Let 0 < A, B < π/2 satisfying the equation 3sin2 A + 2sin2 B = 1 and 3sin 2A – 2sin 2B = 0, then A + 2B is equal to ________(a) π(b) π/2(c) π/4(d) 2π

Answer»

Correct option is (b) π/2 

3 sin 2A – 2sin 2B = 0 

sin 2B = 3/2 sin 2A …….(i) 

3 sin2 A + 2 sin2 B = 1 

3 sin2 A = 1 – 2 sin2

3 sin2 A = cos 2B ……(ii) 

cos(A + 2B) = cos A cos 2B – sin A sin 2B 

= cos A (3 sin2 A) – sin A (3/2 sin 2A) …..[From (i) and (ii)] 

= 3 cos A sin2 A – 3/2 (sin A) (2 sin A cos A) 

= 3 cos A sin2 A – 3 sin2 A cos A 

= 0

= cos π/2

∴ A + 2B = π/2 ……..[∵ 0 < A + 2B < 3π/2]

268.

The value of tan 30°/cot 60° is(A)1/√2 (B)1/√3 (C) √3 (D) 1

Answer»

Correct answer is (D) 1

269.

If cos A = 4/5 , then the value of tan A is (A) 3/5 (B) 3/4 (C) 4/3 (D) 5/3

Answer»

Correct answer is (B) 3/4

270.

If sin A = 1/2 , then the value of cot A is (A) √3 (B) 1/√3 (C) √3/2 (D) 1

Answer»

Correct answer is (A) √3

271.

The value of (sin 45° + cos 45°) is (A) 1/√2 (B) √2 (C) √3/2 (D) 1

Answer»

Correct answer is (B) √2

272.

If sin θ + cos θ = √3 , then prove that tan θ + cot θ = 1

Answer»

Solution :

sin θ + cos θ = 3 (Given)

or (sin θ + cos θ)2 = 3

or sin2 θ + cos2θ + 2sinθ cosθ = 3

2sinθ cosθ = 2 [sin2θ + cos2θ = 1]

or sin θ cos θ = 1 = sin2θ + cos2θ

or 1 = (sin2θ + cos2θ)/sin θ cos θ

Therefore, tanθ + cotθ = 1

273.

What is Line of Sight?

Answer»

It is an imaginary line drawn from the eye of the observer to the point of the object viewed by the observer.

274.

What is line of Sight?

Answer»

It is an imaginary line drawn from the eye of the observer to the point of the object viewed by the observer.

275.

If sin A = 24/25, then sec A = ………A) 7/25B) 25/7C) 24/7D) 7/24

Answer»

Correct option is: B) \(\frac{25}{7}\)

Sin A = \(\frac {24}{25}\)   

\(\therefore\) cos A = \(\sqrt {1-sin^2A}\)

\(\sqrt{1-(\frac {24}{25})^2}\)

\(\sqrt {\frac {25^2 - 24^2}{25^2}}\)

\(\sqrt {\frac {625 - 576}{25}}\)

\(\sqrt {\frac {49}{25}} = \frac 7{25}\)

\(\therefore\) Sec A = \(\frac 1{Cos\,A} = \frac {1} {\frac 7{25}} = \frac {25}7\)

Correct option is: B) \(\frac{25}{7}\)

276.

Values of sin 30°, sin 90°, sec 60° are in ………… A) A.P. B) G.P. C) a D) (A)or(C)

Answer»

Correct option is: B) G.P.

Sin \(30^\circ\) = \(\frac 12\)

sin \(90^\circ\) = 1

and sec \(60^\circ\) = 2

\(\because\) \(\frac 12\), 1 & 2 are in G.P

\(\therefore\) sin \(30^\circ\), sin \(90^\circ\) & sec \(60^\circ\) are in G.P

Correct option is: B) G.P.

277.

If `a=sectheta-tantheta and b= sectheta+tantheta`, thenA. `a=b`B. `(1)/(a)=(-1)/(b)`.C. `a=(1)/(b)`.D. `a-b=1`

Answer» Correct Answer - C
Use the identity `sec^(2)theta-tan^(2)theta=1`.
278.

If `sin^(4)A-cos^(4)A=1,then (A//2)`is ______.`(0ltAle90^(@))`.A. `45^(@)`B. `60^(@)`C. `30^(@)`D. `40^(@)`

Answer» Correct Answer - A
`a^(4)-b^(4)=(a^(2)-b^(2))(a^(2)+b^(2))`.
279.

If `secalpha+tanalpha=m, " then " sec^(4)alpha-tan^(4)alpha-2sec alpha tan alpha` is ___________.A. `m^(2)`B. `-m^(2)`C. `(1)/(m^(2))`D. `(-1)/(m^(2))`

Answer» Correct Answer - C
Simplify the given expression and find `secalpha-tanalpha`.
280.

A vertiacal pole is 60 m high, The angle of depression of two points P and Q on the ground are `30^(@) and 45^(@)` respectively. If the points P and Q lie on either side of the pole, then find the distance PQ.

Answer» Correct Answer - `60(sqrt3+1)m`
281.

`tan38^(@)-cot22^(@)`= _________.A. `(1)/(2)cosec38^(@)sec22^(@)`B. `2 sin22^(@)cos38^(@)`C. `-(1)/(2) cosec22^(@)sec38^(@)`D. None of these

Answer» Correct Answer - D
(i) Convert the given trignometric value in terms of `sintheta, costheta`, then simplify to obtain the required value.
Use the formula, cost `(A+B)=cosA*cosB-sinA*sinB`.
282.

If `x^n=a^m cos^4 theta ` and `y^n = b^m sin^4 theta` then `(i) (x^(n/2))/(a^(m/2))+ (y^(n/2))/(b^(m/2))=1` `(ii) x^n/a^m+y^n/b^m=1`(iii) `(x^(n/2))/(y^(n/2))+ (a^(m/2))/(y^(m/2))=1` (iv) None of theseA. `(x^(n//2))/(a^(m//2))+(y^(n//2))/(b^(m//2))=1`B. `(x^(n))/(a^(m))+(y^(n))/(b^(m))=1`C. `(x^(n//2))/(y^(n//2))+(a^(m//2))/(b^(m//2))=1`D. None of these

Answer» Correct Answer - A
`x^(n)=a^(m)cos^(4)theta, and y^(n)=b^(m)sin^(4)theta`
`implies cos^(4)theta=(x^(n))/(a^(m)) and sin^(4) theta =(y^(n))/(b^(m))`
`implies cos^(2) theta=(x^(n//2))/(a^(m//2)), sin^(4) theta=(y^(n//2))/(b^(m//2))`
But, `sin^(2)theta+cos^(2)theta=1`
`:. (x^(n//2))/(a^(m//2))+(y^(n//2))/(b^(m//2))=1`
283.

If `tan theta - cot theta =7`, then the value of `tan^(3)theta-cot^(3)theta` isA. 250B. 354C. 343D. 364

Answer» Correct Answer - D
Given, ` tan theta- cot theta=7`.
We know that ,
`a^(3)-b^(3)=(a-b)^(3)+3ab(a-b)`
`tan^(3) theta-cot^(3) theta=(tan theta- cot theta)^(3)+3 tan theta cot theta (tan theta - cot theta )`
`=7^(3)+3(7)=343+21=364`.
284.

If `(1+tan theta )/(1- tan theta)=sqrt(3)` , then find the value of `theta`.A. `30^(@)`B. `25^(@)`C. `15^(@)`D. `45^(@)`

Answer» Correct Answer - C
`(1+tan theta)/(1- theta)=sqrt(3)`
`(tan45^(@)+tan theta)/(1- tan 45^(@)*tan theta )=sqrt(3)`.
`tan(45^(@)+ theta)- tan 60^(@)`
`implies 45^(@)+ theta=60^(@)`
`theta=60^(@)-45^(@)=15^(@)`.
285.

Prove that sin (A + B) sin (A – B) = cos2 B – cos2 A

Answer»

LHS = sin (A + B) sin (A – B) 

= (sin A cos B + cos A sin B) (sin A cos B – cos A sin B) 

= sin2 A cos2 B – cos2 A sin2

= (1 – cos2 A) cos2 B – cos2 A (1 – cos2 B) 

= cos2 B – cos2 A cos2 B – cos2 A + cos2 A cos2

= cos2 B – cos2 A = RHS

286.

Prove that: (i) tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.(ii) 2 sin2 \(\frac{\pi}{6}\) + cosec2 \(\frac{7\pi}{6}\) cos2 \(\frac{\pi}{3}\)= \(\frac{3}{2}\)(iii) sec(\(\frac{3\pi}{2}-\theta\)) sec(\(\theta-\frac{5\pi}{2}\)) + tan(\(\frac{5\pi}{2}+\theta\)) tan(\(\theta-\frac{5\pi}{2}\)) = - 1

Answer»

(i) tan(-225°) = -(tan 225°) 

= -(tan(180° + 45°)) 

= – tan 45° = – 1 

cot(-405°) = -(cot 405°) 

= – cot(360° + 45°) [∵ For 360° + 45° no change in T-ratio.] 

= -cot 45° 

= -1 

tan(-765°) = -tan 765° 

= -tan(2 x 360° + 45°) 

= -tan 45° 

= -1 

cot 675° = cot (360°+ 315°) 

= cot 315° 

= cot(360° – 45°) 

= -cot 45° 

= -1 

LHS = tan(-225°) cot(-405°) – tan(-765°) cot(675°) 

= (-1) (-1) – (-1) (-1) 

= 1 – 1

= 0 = RHS. 

Hence proved.

(ii) 2 sin\(\frac{\pi}{6}\) + cosec2 \(\frac{7\pi}{6}\) cos2 \(\frac{\pi}{3}\)\(\frac{3}{2}\)

LHS = 2 sin\(\frac{\pi}{6}\) + cosec2 \(\frac{7\pi}{6}\) cos2 \(\frac{\pi}{3}\)\(\frac{3}{2}\)

[∵ \(\frac{7\pi}{6}\)= 210°, 210° = 180° + 30°. For 180° + 30° no change in T-ratio. 210° lies in 3rd quadrant, cosec θ is negative.] 

= 2(sin\(\frac{\pi}{6}\))2 + (cosec (180° + 30°))(cos\(\frac{\pi}{3}\))2

= 2(\(\frac{1}{2}\))2 + (-cosec 30°)2.(\(\frac{1}{2}\))2 

= 2 x \(\frac{1}{4}+(-2)^2\frac{1}{4}\) 

\(\frac{2}{4}+\frac{4}{4}=\frac{6}{4}\)

\(\frac{6}{4}\)

\(\frac{3}{2}\)

= RHS

(iii) sec(\(\frac{3\pi}{2}-\theta\)) = sec (270° – θ) = -cosec θ 

[∵ For 270° – θ change T-ratio. So add ‘co’ infront ‘sec’, it becomes ‘cosec’] 

sec(θ – \(\frac{5\pi}{2}\)) = sec(-(\(\frac{5\pi}{2}\) - θ))

= sec(\(\frac{5\pi}{2}\) – θ) [∵ sec(-θ) = θ] 

= sec(450° – θ) 

= sec (360° + (90° – θ))

= sec (90° – θ) 

= cosec θ 

[∵ For 90° – θ change in T-ratio. So add ‘co’ in front of ‘sec’ it becomes ‘cosec’] 

tan(\(\frac{5\pi}{2}\) + θ) = tan(450° + θ) 

[∵ For 90° + θ, change in T-ratio. So add ‘co’ in front of ‘tan’ it becomes ‘cot’] 

= tan (360° + (90° + θ)) 

= tan (90° + θ) 

= -cot θ

 tan(\(\theta-\frac{5\pi}{2}\)) = tan(-(\(\frac{5\pi}{2}\) - θ))

= -  tan (\(\frac{5\pi}{2}\) - θ) [∵ tan(-θ) = -tan θ] 

= -tan(450° – θ) 

= -tan(360° + (90° – θ)) 

= -tan(90° – θ) 

= -cot θ 

LHS = sec(\(\frac{3\pi}{2}-\theta\)) sec(\(\theta-\frac{5\pi}{2}\)) + tan(\(\frac{5\pi}{2}+\theta\)) tan(\(\theta-\frac{5\pi}{2}\))

= -cosec θ (cosec θ) + (-cot θ) (-cot θ) 

= -cosec2 θ + cotθ 

= -(1 + cot2 θ) + cot2 θ [∵ 1 + cot2 θ = cosec2 θ] 

= -1 

= RHS

287.

Simplify `sin(A+45^(@))sin(A-45^(@))`.

Answer» Correct Answer - `-(1)/(2)cos2A`
288.

If `cottheta=(4)/(3) and theta` is acute, then find the value of `(tantheta+cottheta)/(sectheta+cosectheta)`.

Answer» Correct Answer - `(5)/(7)`
289.

The `(3pi)/(2)` is equivalent to ___________in centesimal system.

Answer» Correct Answer - `300^(g)`
290.

Write an equation eliminating theta from the equations a = d `sintheta and c = d costheta`.

Answer» Correct Answer - `a^(2)+c^(2)=d^(2)`
291.

If `tantheta+cottheta=2, then tan^(10)theta+cot^(10)theta`=___________`(" Where " 0 ltthetalt90^(@))`.

Answer» Correct Answer - 2
292.

Find the value of `sin15^(@)`

Answer» We have, ` sin15^(@)=sin(45^(@)-30^(@))=sin45^(@) cos 30^(@)-cos45^(@) sin30^(@)`
`=(1)/(sqrt(2))xx(sqrt(3))/(2)-(1)/(sqrt(2))xx(1)/(2)=(sqrt(3)-1)/(2sqrt(2))`
`:. sin15^(@)=(sqrt(3)-1)/(2sqrt(2))`.
293.

Find the value of tan `75^(@)`.

Answer» We have, `tan75^(@)=tan(45^(@)+30^(@))`
`(tan45^(@)+tan30^(@))/(1- tan45^(@)*tan30^(@))`
`=(1+(1)/(sqrt(3)))/(1-1xx(1)/(sqrt(3)))=(sqrt(3)+1)/(sqrt(3)-1)`
`((sqrt(3)+1)/(sqrt(3)-1))((sqrt(3)+1)/(sqrt(3)+1))=(3+1+2sqrt(3))/(2)=2+sqrt(3)`
`:. tan 75^(@)=(sqrt(3+1))/(sqrt(3-1)) or 2+sqrt(3)`.
294.

Eliminate `theta` from the equation , `a=x sin theta-y cos theta and b= x cos theta + y sin theta`.

Answer» Correct Answer - `x^(2)+y^(2)=a^(2) + b^(2)`
295.

The angle of depression of the top of the tower from the top of a building is `30^(@)` and angle of elevation of the top of the tower from the bottom of the building is `45^(@)` and if the height of the tower is 20 m, then find the height of the building.

Answer» Correct Answer - `(20(1+sqrt3))/(sqrt3)m`
296.

Eliminate `theta` from the equation `a=x sec theta and b=y tan theta `.

Answer» We know that trigonmetric ratios are meaningful when they are associated with some `theta` , i.e., we cannot imagine any trigonometric ratio without `theta`. Eliminate `theta` means, eliminating the trigonometric ratios by using suitable identity.
Given , `a=x sec theta and b=y tan theta `
`(a)/(x) =sec theta and (b)/(y)=tan theta `
We know that `, sec^(2) theta-tan^(2) theta=1`.
So,`((a)/(x))^(2)=((b)/(y))^(2)=1`
`(a^(2))/(x^(2))-(b^(2))/(y^(2))=1`.
Hence, the required equation is `(a^(2))/(x^(2))-(b^(2))/(y^(2))=1`.
297.

If ` sin (A+B)=(sqrt(3))/(2)` and cosec A=2, then find A and B.

Answer» Given , `sin(A+B)=(sqrt(3))/(2)`
`sin(A+B)=sin60^(@)`
`A+B=60^(@)" " ` (1)
`"cose"A=2="cosec"30^(@)`
`A=30^(@) " "`(2)
From Eqs. (1) and (2) , we have
`A=30^(@) and B=30^(@)`
298.

Eliminate `theta` from the following equations: `x sin alpha + ycosalpha = p and x cos alpha-y sin alpha = q`

Answer» Correct Answer - `x^(2)+y^(2)=p^(2)+q^(2)`
299.

Find the relation obtained by eliminating `theta` from the equations `x=a cos theta+b sin theta` and `y=a sin theta- b sin theta`.

Answer» Given, `x=a cos theta + b sin theta `
`x^(2)=(a cos theta + b sin theta )^(2)`
`=a^(2)cos^(2)theta+b^(2)sin^(2)theta+2ab cos theta sin theta `
Also `y=a sin theta - b cos theta`
`y^(2)=a^(2)sin^(2)theta+b^(2)cos^(2) theta-2 ab sin theta cos theta `
`x^(2)+y^(2)=a^(2)(sin^(2) theta + cos^(2) theta)+b^(2)(cos^(2)theta+sin^(2) theta )`
`=a^(2)+b^(2)`
Hence, the required relation is `x^(2)+y^(2)=a^(2)+b^(2)`.
300.

Eliminate `theta` from the equation `P=a "cosec" theta nd Q=a cot theta`.

Answer» Given , `P= a " cosec" theta and Q=a cot theta `
`(P)/(a)="cosec" theta and (Q)/(a)= cot theta `.
We know that , `"cosec"^(2)theta- cot^(2)theta=1`
`((P)/(a))^(2)-((Q)/(a))^(2)=1`
Hene, the required relation is `P^(2)-Q^(2)=a^(2)`.