Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

Prove:sin (50° + θ) – cos (40° – θ) + tan 1° tan 10° tan 70° tan 80° tan 89° = 1

Answer»

Taking the L.H.S, 

= sin (50° + θ) – cos (40° – θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° 

= sin (50° + θ) – sin (90° – (40° – θ)) + tan (90 – 89)° tan (90 – 80)° tan (90 – 70)° tan 70° tan 80° tan 89° [∵ sin (90 – θ) = cos θ] 

= sin (50° + θ) – sin (50° + θ) + cot 89° cot 80° cot 70° tan 70° tan 80° tan 89° [∵ tan (90° – θ) = cot θ]

= 0 + (cot 89° x tan 89°) (cot 80° x tan 80°) (cot 70° x tan 70°) 

= 0 + 1 x 1 x 1 [∵ tan θ x cot θ = 1] 

= 1

= R.H.S 

Hence Proved

502.

Prove that :sin240° + sin250° = 1

Answer»

Taking LHS = sin240+ sin250o

⇒ cos2 (90° - 40°) + sin2 50° [∵ Sin θ = cos (90° - θ)]

⇒ cos2 50° + sin2 50°

= 1 =RHS [∵ cos2 θ + sin2 θ = 1]

Hence Proved

503.

Prove that (i) sin(A + B) sin(A – B) = sin2 A – sin2 B (ii) cos(A + B) cos(A – B) = cos2 A – sin2 B = cos2 B – sin2 A(iii) sin2(A + B) – sin2(A – B) = sin2A sin2B (iv) cos 8θ cos 2θ = cos2 5θ – sin2 3θ

Answer»

(i) LHS = sin (A + B) sin (A – B) 

= (sin A cos B + cos A sin B) (sin A cos B – cos A sin B) 

= sin2 A cos2 B – cos2 A sin2

= sin2 A (1 – sin2 B) – (1 – sin2 A) sin B 

= sin2 A – sin2 A sin2 B – sin2 B + sin2 A sin2

= sin2 A – sin2 B = RHS

(ii) LHS = cos (A + B) cos (A – B) = (cos A cos B – sin A sin B) (cos A cos B + sin (A sin B) 

= cos2 A cos2 B – sin2 A sin2

= cos2 A (1 – sin2 B) – (1 – cos2 A) sin2

= cos2 A – cos2 A sin2 B – sin2 B + cos2 A sin2

= cos2 A – sin2 B = RHS 

Now cos2 A – sin2 B = (1 – sin2 A) – (1 – cos2 B) 

= 1 – sin2 A – 1 + cos2

= cos2 B – sin2 A

(iii) sin2 A – sin2 B = sin (A + B) sin (A – B) 

LHS = sin2(A + B) – sin2(A – B) = sin [(A + B) + (A – B)] [sin (A + B) – (A – B)] 

= sin 2A sin 2B = RHS

(iv) LHS = cos 8θ cos 2θ 

= cos (5θ + 3θ) cos (5θ – 3θ). 

We know cos (A + B) cos (A – B) = cos2 A – sin2

∴ cos (5θ + 3θ) cos (5θ – 3θ) = cos2 5θ – sin2 3θ = RHS

504.

Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B).

Answer»

LHS = cos2 A + cos2 B – 2 cos A cos B [cos A cos B – sin A sin B] 

= cos2 A + cos2 B – 2 cos2 A cos2 B + 2 sin A cos A sin B cos B 

= (cos2 A – cos2 A cos2 B) + (cos2 B – cos2 A cos2 B) + 2 sin A cos A sin B cos B 

= cos2 A (1 – cos2 B) + cos2 B (1 – cos2 A) + 2 sin A cos A sin B cos B 

= cos2 A sin2 B + cos2 B sin2 A + 2 sin A cos B sin B cos A 

= (sin A cos B + cos A sin B)2 

= sin(A + B) = RHS

505.

If cos(α – β) + cos(β – γ) + cos(γ – α) = -3/2, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ

Answer»

Given cos(α – β) + cos(β – γ) + cos(γ – α) = -3/2

2 cos (α – β) + 2cos (β – γ) + 2cos (γ – α) = -3 

2cos(α – β) + 2cos(β – γ) + 2cos (γ – α) + 3 = 0 

[2 cos α cos β + 2 sin α sin β] + [2 cos β cos γ + 2 sin β sin γ] + [2 cos γ cos α + sin γ sin α] + 3 = 0 

= [2 cos α cos β + 2 cos β cos γ + 2 cos γ cos α] + [2 sin α sin β + 2 sin β sin γ + 2 sin γ sin α] + (sinα + cos2 α) + (sin2 β + cos2 β) + (sin2 γ + cos2 γ) = 0 

⇒ (cos2 α + cos2 β + cos2 γ + 2 cos α cos β + 2 cos β cos γ + 2 cos γ cos α) + (sin2 α + sin2 β) + (sin2 γ + 2 sin α sin β + 2 sin β sin γ + 2 sin γ sin α) = 0 

(cos α + cos β + cos γ)2 + (sin α + sin β + sin γ)2 = 0 

=(cos α + cos β + cos γ) = 0 and sin α + sin β + sin γ = 0 

Hence proved

506.

If cosec θ – cot θ = q, then the value of cot θ is(A) 2q/1+q2(B) 2q/1-q2(C) 1-q2/2q(D) 1+q2/2q

Answer»

Correct option is (C) 1-q2/2q 

cosec θ – cot θ = q ……(i) 

cosec2 θ – cot2 θ = 1 

∴ (cosec θ + cot θ) (cosec θ – cot θ) = 1 

∴ (cosec θ + cot θ)q = 1 

∴ cosec θ + cot θ = 1/q …….(ii) 

Subtracting (i) from (ii), we get

2cot θ = 1/q - q

∴ cot θ = 1-q2/2q 

507.

If X + Y = 90°, then express cos X in terms of simplest trigonometric ratio of Y.

Answer»

Given: X + Y = 90°

⇒ X= 90° - Y

Multiplying both side by cos, we get

= cos X = Cos (90° - Y)

⇒ cos X = sin Y [∵ Sin θ = cos (90° - θ)]

508.

If A+B = 90°, then fill up the blanks with suitable trigonometric ratio of complementary angle of A or B.(i) sin A =…. (ii) cos B =…(iii) sec A =…(iv) tan B =…(v) cosec B =… (vi) cot A=…

Answer»

(i) Here, A+B = 90°

⇒ A = 90° - B

Multiplying both sides by Sin, we get

Sin A = Sin (90° - B)

⇒ sin A = Cos B [∵ cos θ = sin (90° - θ)]

(ii) Here, A+B = 90°

⇒ B = 90° - A

Multiplying both sides by cos, we get

Cos B = cos (90° - A)

⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]

(iii) Here, A+B = 90°

⇒ A = 90° - B

Multiplying both sides by sec, we get

Sec A = Sec (90° - B)

⇒ sec A = Cosec B [∵ cosec θ = sec (90° - θ)]

(iv) Here, A+B = 90°

⇒ B = 90° - A

Multiplying both sides by tan, we get

tan B = tan (90° - A)

⇒ tan B = cot A [∵ cot θ = tan (90° - θ)]

(v) Here, A+B = 90°

⇒ B = 90° - A

Multiplying both sides by cosec, we get

Cosec B = cosec (90° - A)

⇒ cosec B = sec A [∵ sec θ = cosec (90° - θ)]

(vi) Here, A+B = 90°

⇒ A = 90° - B

Multiplying both sides by Sin, we get

cotA = cot (90° - B)

⇒ cot A = tan B [∵ tan θ = cot (90° - θ)]

509.

If A + B = 90°, then express cos B in terms of simplest trigonometric ratio of A.

Answer»

Given: A + B = 90°

⇒ B = 90° - A

Multiplying both side by cos, we get

= cos B = Cos (90° - A)

⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)]

510.

Find the values of each of the following trigonometric ratios.(i) sin 300° (ii) cos (-210°) (iii) sec 390° (iv) tan (-855°) (v) cosec 1125°

Answer»

(i) sin 300° = sin(360° – 60°) 

[For 360° – 60°. No change in T-ratio. 300° lies in 4th quadrant ‘sin’ is negative] 

= -sin 60°

= - \(\frac{\sqrt{3}}{2}\)

(ii) cos(-210°) = cos 210° (∵ cos(-θ) = cos θ) 

[∵ 180 + 30°. No change in T-ratio. 210° lies 3rd quadrant ‘cos’ is negative] 

= cos(180° + 30°) 

= -cos 30°

= - \(\frac{\sqrt{3}}{2}\)

(iii) sec 390° = sec(360° + 30°) 

= sec 30° 

\(\frac{1}{cos 30°}\)

\(\frac{1}{\frac{\sqrt{3}}{2}}\)

\(\frac{2}{\sqrt{3}}\)

(iv) tan(-855°) = -tan 855° (∵ tan(-θ) = – tan θ) 

[∵ Multiplies of 360° are dropped out. For 180° – 45°. No change in T-ratio. 180° – 45° lies in 2nd quadrant ‘tan’ is negative] 

= -tan(2 x 360° + 135°) 

= -tan 135° 

= -tan(180° – 45°) 

= -(-tan 45°) 

= -(-1) 

= 1

(v) cosec 1125° = cosec(3 x 360°+ 45°) 

= cosec 45° 

\(\frac{1}{sin45°}\)

\(\frac{1}{\frac{1}{\sqrt{2}}}\)

= √2

511.

Find the value of tan 225°

Answer»

tan 225° = tan (180° + 45°) 

= tan 45° 

= 1 .

512.

Express each of the following a sum or difference of two trigonometric functions. (i) sin 5A · cos3A (ii) cos 4A sin 2A (iii) cos \(\frac{5\theta}{2}\). sin\(\frac{\theta}{2}\) (iv) 2 cos 70° cos 10°

Answer»

(i) Using transformation formulae 

sin5A . cos3A = \(\frac{1}{2}\)[sin(5A +3A) + sin(5A – 3A)] 

= \(\frac{1}{2}\)(sin8A + sin2A) 

(ii) cos4A – sin2A = \(\frac{1}{2}\)[sin 6A – sin2A] 

(iii) cos \(\frac{5\theta}{2}\). sin\(\frac{\theta}{2}\) = \(\frac{1}{2}\)[sin3θ – sin2θ] 

(iv) 2cos70° . cos10° = 2 x \(\frac{1}{2}\)[cos80° + cos60°] 

= cos80° +\(\frac{1}{2}\)

513.

State the quadrant in which 6 lies if i. sin θ < 0 and tan θ > 0 ii. cos θ < 0 and tan θ > 0

Answer»

i. sin θ < 0 sin θ is negative in 3rd and 4th quadrants, tan 0 > 0 

tan θ is positive in 1st and 3rd quadrants. 

∴ θ lies in the 3rd quadrant.

ii. cos θ < 0 cos θ is negative in 2nd and 3rd quadrants, tan 0 > 0 

tan θ is positive in 1st and 3rd quadrants. 

∴ θ lies in the 3rd quadrant.

514.

State the signs of cot 1899°

Answer»

1899° = 5 x 360° + 99° 

∴ 1899° and 99° are co-terminal angles. 

Since 90° < 99° < 180°, 

99° lies in the 2nd quadrant. 

∴ 1899° lies in the 2nd quadrant. 

∴ cot 1899° is negative.

515.

State the signs of cot sin 986° 

Answer»

986° = 2x 360° + 266° 

∴ 986° and 266° are co-terminal angles. 

Since 180° < 266° < 270°, 266° lies in the 3rd quadrant. 

∴ 986° lies in the 3rd quadrant. 

∴ sin 986° is negative.

516.

State the signs of cos 4c and cos 4°. Which of these two functions is greater?

Answer»

Since 0° < 4° < 90°, 4° lies in the first quadrant. 

∴ cos4° >0 …(i) 

Since 1c = 57° nearly, 

180° < 4c < 270° 

∴ 4c lies in the third quadrant. 

∴ cos 4c < 0 ………(ii) 

From (i) and (ii), 

cos 4° is greater.

517.

What is the value of tan (–1575°)?(a) 1 (b) \(\frac12\) (c) 0 (d) –1

Answer»

(a) 1

tan (– 1575°) 

= – tan (1575°)                ( tan (–θ) = – tanθ) 

= – tan (4 × 360° + 135°) 

= – tan (135°)             ( tan (n.360° + θ) = tan θ) 

= – tan (90° + 45°)          ( tan (90° + θ) = – cot θ) 

= – (– cot 45°) = cot 45° = 1.

518.

cos 1° + cos 2° + cos 3° + ........ + cos180° is equal to(a) –1(b) 0(c) 1(d) 2

Answer»

(a) -1

cos 1° + cos 2° + cos 3° + ........ + cos 180° 

= (cos 1° + cos 179°) + (cos 2° + cos 178°) + ........ + (cos 89° + cos 91°) + cos 90° + cos 180º 

= [cos 1° + cos (180° – 1°)] + [cos 2° + cos (180° – 2°)] + ....... + [cos 89° + cos (180° – 91°)] + cos 90° + cos 180° 

= (cos 1° – cos 1°) + (cos 2° – cos 2°) + ....... + (cos 89° – cos + 89°) + 0 + (– 1) = – 1. 

( cos (180° – θ) = – cos θ)

519.

If A, B, C, D are the successive angles of a cyclic quadrilateral, then what is cos A + cos B + cos C + cos D equal to:(a) 4 (b) 2 (c) 1 (d) 0

Answer»

(d) 0

In a cyclic quadrilateral, the sum of the opposite angles is 180°. 

⇒ A + C = 180° and B + D = 180° 

∴ cos A + cos B + cos C + cos D 

= cos A + cos B + cos (180° – C) + cos (180° – B) 

= cos A + cos B – cos A – cos B 

= 0.

520.

Prove the following: sin 6x + sin 4x – sin 2x = 4 cos x sin 2x cos 3x

Answer»

= 2sin (\(\frac{6x+4x}{2}\)) cos (\(\frac{6x-4x}{2}\)) – 2 sin x cos x

= 2 sin 5x cos x — 2 sin x cos x

= 2 cos x (sin 5x — sin x)

= 2 cos[2 cos(\(\frac{5x+x}{2}\)) sin (\(\frac{5x-x}{2}\))]

= 2 cos x (2 cos 3x sin 2x) 

= 4 cos x sin 2x cos 3x 

= R.H.S.

521.

\(\bigg[1+cos\fracπ8\bigg]\)\(\bigg[1+cos\frac{3π}8\bigg]\)\(\bigg[1+cos\frac{5π}8\bigg]\)\(\bigg[1+cos\frac{7π}8\bigg]\) is equal to(a) \(\frac18\) (b) \(\frac12\)(c) \(\frac{1+\sqrt2}{2\sqrt2}\)(d) cos\(\fracπ8\)

Answer»

(a) \(\frac18\)

\(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1+cos\frac{5π}8\bigg)\)\(\bigg(1+cos\frac{7π}8\bigg)\)

\(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1+cos\bigg(π-cos\frac{3π}8\bigg)\bigg)\)\(\bigg(1+cos\bigg(π-\frac{π}8\bigg)\bigg)\)

=  \(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1-cos\frac{3π}8\bigg)\)\(\bigg(1-cos\frac{π}8\bigg)\)        (cos (π – θ) = – cos θ)

\(\bigg(1-cos^2\fracπ8\bigg)\)\(\bigg(1-cos^2\frac{3π}8\bigg)\) = sin2 \(\fracπ8\)  sin2 \(\frac{3π}8\)

=  sin2 \(\fracπ8\)  cos2 \(\frac{π}8\) \(\bigg(∵ sin\frac{3π}{8}= sin\bigg(\fracπ2-\fracπ8\bigg)=cos\fracπ8\bigg)\)

\(\frac14\bigg(4\,sin^2\fracπ8cos^2\fracπ8\bigg)\) = \(\frac14\bigg(2\,sin\fracπ8\,cos\fracπ8\bigg)^2\)

\(\frac14\big(sin\fracπ4\big)^2\,\frac14\big(\frac1{\sqrt2}\big)^2=\frac18.\)             (Using, 2 sin θ cos θ = sin 2θ)

522.

Find the values of cot 225°

Answer»

cot 225° = \(\frac{1}{ tan 225°}=\frac{1}{tan(180°+45°)}\)

\(\frac{1}{(\frac{tan180°+tan 45°}{1-tan180° tan 45°})}\)

\(\frac{1}{(\frac{0+1}{1-0(1)})}\)

\(\frac{1}{(\frac{1}{1})}\)

=1

523.

Find the value of cot (-1110°)

Answer»

cot (-1110°) =-cot (1110°) 

= -cot (1080°+ 30°) 

= – cot (3 x 360° + 30° ) 

= – cot 30°

= √3

524.

Find the value of cos 600°

Answer»

cos 600° = cos (360° + 240°) 

= cos 240° 

= cos (180° + 60°) 

= – cos 60°

= - 1/2

525.

Find the value of cos 315°

Answer»

cos 315° = cos (270° + 45°)

sin 45° = 1/√2

526.

The value of cos(-480°) is: (a) √3 (b) \(-\frac{\sqrt{3}}{2}\)(c) \(\frac{1}{2}\)(d) \(\frac{-1}{2}\)

Answer»

(d) \(\frac{-1}{2}\)

cos(-480°) = cos 480° [∵ cos(-θ) = cos θ] 

= cos(360° + 120°) 

= cos 120° 

= cos(180° – 60°)

= -cos 60° 

\(\frac{-1}{2}\)

527.

If 2x2 cos 60° – 4 cot2 45° – 2 tan 60° = 0, what is the value of x?(a) 2 (b) 3 (c) √3 - 1(d) √3 +1

Answer»

(d) √3+1

2x2 cos 60° – 4 cot2 45° – 2 tan 60° = 0 

⇒ 2x2\(\frac12\) - 4 x (1)2 - 2 x √3 = 0 

⇒ x2 - 4 - 2√3 = 0 ⇒ x2 = 4 + 2√3

⇒ x2 = 3 + 1 + 2√3 ⇒ x2 = (√3)2 + (1)2 + 2√3

⇒ x2 = (√3 + 1)2 ⇒ x = √3+1.

528.

The cotangent of the angles \(\fracπ3\), \(\fracπ4\) and \(\fracπ6\) are in(a) A.P (b) G.P. (c) H.P. (d) None of these

Answer»

(b) G.P

cot \(\fracπ3\) = cot 60° = \(\frac{1}{\sqrt3}\), + cot \(\fracπ4\) = cot 45° = 1, cot \(\fracπ6\) = cot 30° = √3

We can see that

\(\bigg(cot \fracπ3\bigg).\bigg(cot\bigg(\frac{π}{6}\bigg)\bigg)=\frac{1}{\sqrt3}.\sqrt3=1=\bigg(cot\frac{π}{4}\bigg)^2\)

∴ cot \(\fracπ3\), cot \(\fracπ4\), cot \(\fracπ6\) are in G.P

529.

If 2 sin 2θ = √3, prove that θ = 30°.

Answer»

2 sin 2θ = √3

=> sin(2θ) = √3/2 

=> sin(2θ) = sin(60°) 

=> 2θ = 60° 

=> θ = 60°/2 

=> θ = 30°

530.

The value of the expression cos1°. cos2°. cos3° … cos 179° = (A) -1 (B) 0(C) 1/√2(D) 1

Answer»

Correct answer is (B) 0

Explanation : 

cos 1° cos 2° cos 3° … cos 179° 

= cos 1° cos 2° cos 3° … cos 90°… cos 179° 

= 0 …[∵ cos 90° = 0]

531.

The value of \(\frac{cos^3 20° - cos^3 70°}{sin^3 70° - sin^3 20°}\) is  A. 1/2 B. 1/√2 C. 1 D.2

Answer»

\(\frac{cos^3 20° - cos^3 70°}{sin^3 70° - sin^3 20°}\) = \(\frac{cos^3 20° - cos^3 (90°-20°)}{sin^3 (90°-20°) - sin^3 20°}\)

\(\frac{cos^3 20° - sin^3 20°}{cos^3 20° - sin^3 60°}\) = 1

532.

Prove that (sin4θ – cos4θ +1) cosec2θ = 2

Answer»

Solution :

L.H.S. = (sin4θ – cos4θ +1) cosec2θ

= [(sin2θ – cos2θ) (sin2θ + cos2θ) + 1] cosec2θ

= (sin2θ – cos2θ + 1) cosec2θ

[Because sin 2θ + cos2θ =1]

= 2sin2θ cosec2θ [Because 1– cos 2θ = sin2θ ]

= 2 = RHS

533.

The most general solution of the equation sec2 x = \(\sqrt{2}\) (1 – tan2 x ) are given by (a) nπ ± \(\frac{π}{4}\)(b)  2nπ ± \(\frac{π}{4}\) (c)  nπ ± \(\frac{π}{8}\)(d) None of these

Answer»

Answer : (c)  nπ ± \(\frac{\pi}{8}\)

 sec2 x = \(\sqrt{2}\)  (1 - tan2 α) 

⇒ tan2 α  + 1 = \(\sqrt{2}\) (1 – tan2 α )  

⇒ tan2 α (1 + \(\sqrt{2}\) ) = \(\sqrt{2}\) – 1 

⇒ tan2 α  = \(\frac{\sqrt{2} -1}{\sqrt{2} +1}\) = \(\frac{(\sqrt{2} -1)^2}{(\sqrt{2}+1)(\sqrt{2}-1)}\)  = \((\sqrt{2}-1)^2\) = \({tan}^2\,\frac{\pi}{8}\) 

∴ tan α = tan \(\big(± \frac{\pi}{8}\big)\) 

α = nπ ± \(\frac{\pi}{8}\)

534.

(i) 9 sec2 A – 9 tan2 A =(A) 1 (B) 9 (C) 8 (D) 0(ii) (1 + tanθ+ secθ) (1 + cotθ– cosecθ) =(A) 0 (B) 1 (C) 2 (D) –1(iii) (sec A + tan A) (1 – sin A) =(A) sec A (B) sin A (C) cosec A (D) cos A(iv) (1 + tan2 A)/(1 + cot2 A) = (A) sec2 A (B) –1 (C) cot2 A (D) tan2 A

Answer»

Answer

(i) (B) is correct.

9 sec2A - 9 tan2A

= 9 (sec2A - tan2A)
= 9×1 = 9             (∵ sec2 A - tan2 A = 1)


(ii) (C) is correct

(1 + tan θ + sec θ) (1 + cot θ - cosec θ)   

= (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ)

= (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ

= (cos θ+sin θ)2-12/(cos θ sin θ)

= (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ)

= (1+ 2cos θ sin θ -1)/(cos θ sin θ)

= (2cos θ sin θ)/(cos θ sin θ) = 2


(iii) (D) is correct.

(secA + tanA) (1 - sinA)

= (1/cos A + sin A/cos A) (1 - sinA)

= (1+sin A/cos A) (1 - sinA)

= (1 - sin2A)/cos A

= cos2A/cos A = cos A


(iv) (D) is correct.

1+tan2A/1+cot2

= (1+1/cot2A)/1+cot2A

= (cot2A+1/cot2A)×(1/1+cot2A)

= 1/cot2A = tan2A

535.

Find the value of x in each of the following: 2sin 3x = √3

Answer»

2sin 3x = √3

⇒ sin 3x = \(\frac{\sqrt{3}}{2}\)

⇒ sin 3x = sin 60°

⇒ 3x = 60°

⇒ x = 20°

536.

Prove that (sec θ + cos θ) (sec θ – cos θ) = tan2 θ + sin2 θ

Answer»

(sec θ + cos θ) (sec θ – cos θ) = sec2 θ – cos2 θ 

= (1 + tan2 θ) – (1 – sin2 θ) 

= tan2 θ + sin2 θ = RHS

537.

Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = π/2

Answer»

Taking A + B = X and C = Y 

We get cos (X + Y) = cos X cos Y – sin X sin Y 

(i.e) cos (A + B + C) = cos (A + B) cos C – sin (A + B) sin C 

= (cos A cos B – sin A sin B) cos C – [sin A cos B + cos A sin B] sin C 

cos (A + B + C) = cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C 

If (A + B + C) = π/2 then cos (A + B + C) = 0 

⇒ cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C = 0 

⇒ cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B

538.

Prove that cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 1/2

Answer»

cos 204° = cos (180°+ 24°) = – cos 24° 

cos 125° = cos (180° – 55°) = – cos 55° 

LHS = cos 24° + cos 55° + (- cos 55°) + (- cos 24°) + cos 300° 

= cos 24° + cos 55° – cos 55° – cos 24° + cos 300°

= cos 300° = cos(360° - 60°) = cos 60° = 1/2 = RHS

539.

Prove that sin (270° – θ) sin (90° – θ) – cos (270° – θ) cos (90° + θ) + 1 = 0

Answer»

LHS = sin (270° – θ) sin (90° – θ) – cos (270° – θ) cos (90° + θ) + 1 

Now, sin (270° – θ) = sin {180°+ (90°- θ)} 

= – cos (90° – θ) = – sin θ 

LHS = – cos θ . cos θ – (- sin θ) (- sin θ) + 1

= – cos2 θ – sin2 θ + 1 

= – (cos2 θ + sin2 θ) + 1 = -1 + 1 = 0 = RHS

540.

Prove that [1 + cot α - sec(α + (π/2))][1 + cot α + sec(α + (π/2))] = 2cot α

Answer»

sec(α + π/2) = - cosec α

LHS = [(1 + cot α) + cosec α][(1 + cot α) – cosec α] 

= (1 + cot α)2 – cosec2 α 

= 1 + cot2 α + 2 cot α – cosec2 α 

[∵ 1 + cot2 α = cosec2 α]

= cosec2 α + 2 cot α – cosec2 α 

= 2 cot α = RHS

541.

Prove the following:sin 18° = √5-1/4

Answer»

Let θ = 18° 

∴ 5θ = 90°

∴ 2θ + 3θ = 90° 

∴ 2θ = 90° – 3θ 

∴ sin 2θ = sin (90° – 3θ) 

∴ sin 2θ = cos 3θ 

∴ 2 sin θ cos θ = 4 cos3 θ – 3 cos θ 

∴ 2 sin θ = 4 cos2 θ – 3 …..[∵ cos θ ≠ 0] 

∴ 2 sin θ = 4 (1 – sin2 θ) – 3 

∴ 2 sin θ = 1 – 4 sin2 θ 

∴ 4 sin2 θ + 2 sin θ – 1 = 0

∴ sin θ = \(\frac{-2±\sqrt{4+16}}{8}\)

=\(\frac{-2±2\sqrt5}{8}\)

=\(\frac{-1±\sqrt5}{4}\)

Since, sin 18° > 0

∴ sin 18°=\(\frac{\sqrt5-1}{4}\)

542.

Prove the following:3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) = 13

Answer»

(sin x – cos x) sin6 x + cos6 x

= (sin2 x)3 + (cos2 x)3 

= (sin2 x + cos2 x)3 – 3 sin2 x cos2 x (sin2 x + cos2 x) ….. [∵ a3 + b3 = (a + b)3 – 3ab(a + b)] 

= 13 – 3 sin2 x cos2 x (1) 

= 1 – 3 sin2 x cos2

L.H.S. = 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) 

= 3(1 – 4 sin x cos x + 4 sin2 x cos2 x) + 6(1 + 2 sin x cos x) + 4(1 – 3 sin2 x cos2 x) 

= 3 – 12 sin x cos x + 12 sin2 x cos2 x + 6 + 12 sin x cos x + 4 – 12 sin2 x cos2

= 13 

= R.H.S.

543.

Find the value of sin 495°

Answer»

sin 495° = sin (360° + 135°) 

= sin (135°) 

= sin (90° + 45°) 

= cos 45°

= 1/√2

544.

Find the value of sin 690°

Answer»

sin 690° = sin (720° -30°) 

= sin (2 x 360° – 30°) 

= – sin 30°

= -1/2

545.

Find the value of  tan (- 690°)

Answer»

tan (- 690°) = – tan 690° 

= – tan (720° – 30°) 

= – tan (2 x 360° – 30°) 

= – (- tan 30°) 

= tan 30°

= 1/√3

546.

Find the values of tan 105°

Answer»

tan 105° = tan (60° +45°)

\(\frac{tan60°+tan45°}{1-tan60° tan 45°}\)

=\(\frac{\sqrt3+1}{1-(\sqrt3)(1)}\)

=\(\frac{\sqrt3+1}{1-\sqrt3}\)

547.

Find the values of sin 75°  

Answer»

cos 75° = cos (45° + 30°) 

= cos 45° cos 30° – sin 45° sin 30°

=(1/√2) (√3/2) - (1/√2) (1/2) 

\(\frac{\sqrt3-1}{2\sqrt2}\)

548.

Express cos 75° + cot 75° in terms of angles between 0° and 30°.

Answer»

Given, 

cos 75° + cot 75° 

Since, cos (90 – θ) = sin θ and cot (90 – θ) = tan θ 

cos 75° + cot 75° 

= cos (90 – 15)° + cot (90 – 15)° 

= sin 15° + tan 15° 

Hence, cos 75° + cot 75° can be expressed as sin 15° + tan 15°.

549.

Evaluate:sec 50° sin 40° + cos 40° cosec 50°

Answer»

We know that, 

sin (90 – θ) = cos θ and cos (90 – θ) = sin θ 

So, the given can be expressed as 

sec 50° sin (90 – 50)° + cos (90 – 50)° cosec 50° 

= sec 50° cos 50° + sin 50° cosec 50° 

= 1 + 1 [∵ sin θ x cosec θ = 1 and cos θ x sec θ = 1] 

= 2

550.

If Sin A = \(\frac{1}{2}\) and Cos B = \(\frac{1}{2}\) then find the value of (A + B).

Answer»

Given

Sin A = \(\frac{1}{2}\)

Sin A = Sin 30°

Now,

A = 30° ----(1)

Cos B =  \(\frac{1}{2}\)

Cos B = Cos 60°

B = 60° ----(2)

Now,

Value of (B)

= 30° + 60° [ from (1)&(2) ]

= 90°

Therefore,.

A + B = 90°