InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 501. |
Prove:sin (50° + θ) – cos (40° – θ) + tan 1° tan 10° tan 70° tan 80° tan 89° = 1 |
|
Answer» Taking the L.H.S, = sin (50° + θ) – cos (40° – θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = sin (50° + θ) – sin (90° – (40° – θ)) + tan (90 – 89)° tan (90 – 80)° tan (90 – 70)° tan 70° tan 80° tan 89° [∵ sin (90 – θ) = cos θ] = sin (50° + θ) – sin (50° + θ) + cot 89° cot 80° cot 70° tan 70° tan 80° tan 89° [∵ tan (90° – θ) = cot θ] = 0 + (cot 89° x tan 89°) (cot 80° x tan 80°) (cot 70° x tan 70°) = 0 + 1 x 1 x 1 [∵ tan θ x cot θ = 1] = 1 = R.H.S Hence Proved |
|
| 502. |
Prove that :sin240° + sin250° = 1 |
|
Answer» Taking LHS = sin240o + sin250o ⇒ cos2 (90° - 40°) + sin2 50° [∵ Sin θ = cos (90° - θ)] ⇒ cos2 50° + sin2 50° = 1 =RHS [∵ cos2 θ + sin2 θ = 1] Hence Proved |
|
| 503. |
Prove that (i) sin(A + B) sin(A – B) = sin2 A – sin2 B (ii) cos(A + B) cos(A – B) = cos2 A – sin2 B = cos2 B – sin2 A(iii) sin2(A + B) – sin2(A – B) = sin2A sin2B (iv) cos 8θ cos 2θ = cos2 5θ – sin2 3θ |
|
Answer» (i) LHS = sin (A + B) sin (A – B) = (sin A cos B + cos A sin B) (sin A cos B – cos A sin B) = sin2 A cos2 B – cos2 A sin2 B = sin2 A (1 – sin2 B) – (1 – sin2 A) sin B = sin2 A – sin2 A sin2 B – sin2 B + sin2 A sin2 B = sin2 A – sin2 B = RHS (ii) LHS = cos (A + B) cos (A – B) = (cos A cos B – sin A sin B) (cos A cos B + sin (A sin B) = cos2 A cos2 B – sin2 A sin2 B = cos2 A (1 – sin2 B) – (1 – cos2 A) sin2 B = cos2 A – cos2 A sin2 B – sin2 B + cos2 A sin2 B = cos2 A – sin2 B = RHS Now cos2 A – sin2 B = (1 – sin2 A) – (1 – cos2 B) = 1 – sin2 A – 1 + cos2 B = cos2 B – sin2 A (iii) sin2 A – sin2 B = sin (A + B) sin (A – B) LHS = sin2(A + B) – sin2(A – B) = sin [(A + B) + (A – B)] [sin (A + B) – (A – B)] = sin 2A sin 2B = RHS (iv) LHS = cos 8θ cos 2θ = cos (5θ + 3θ) cos (5θ – 3θ). We know cos (A + B) cos (A – B) = cos2 A – sin2 B ∴ cos (5θ + 3θ) cos (5θ – 3θ) = cos2 5θ – sin2 3θ = RHS |
|
| 504. |
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B). |
|
Answer» LHS = cos2 A + cos2 B – 2 cos A cos B [cos A cos B – sin A sin B] = cos2 A + cos2 B – 2 cos2 A cos2 B + 2 sin A cos A sin B cos B = (cos2 A – cos2 A cos2 B) + (cos2 B – cos2 A cos2 B) + 2 sin A cos A sin B cos B = cos2 A (1 – cos2 B) + cos2 B (1 – cos2 A) + 2 sin A cos A sin B cos B = cos2 A sin2 B + cos2 B sin2 A + 2 sin A cos B sin B cos A = (sin A cos B + cos A sin B)2 = sin2 (A + B) = RHS |
|
| 505. |
If cos(α – β) + cos(β – γ) + cos(γ – α) = -3/2, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ |
|
Answer» Given cos(α – β) + cos(β – γ) + cos(γ – α) = -3/2 2 cos (α – β) + 2cos (β – γ) + 2cos (γ – α) = -3 2cos(α – β) + 2cos(β – γ) + 2cos (γ – α) + 3 = 0 [2 cos α cos β + 2 sin α sin β] + [2 cos β cos γ + 2 sin β sin γ] + [2 cos γ cos α + sin γ sin α] + 3 = 0 = [2 cos α cos β + 2 cos β cos γ + 2 cos γ cos α] + [2 sin α sin β + 2 sin β sin γ + 2 sin γ sin α] + (sin2 α + cos2 α) + (sin2 β + cos2 β) + (sin2 γ + cos2 γ) = 0 ⇒ (cos2 α + cos2 β + cos2 γ + 2 cos α cos β + 2 cos β cos γ + 2 cos γ cos α) + (sin2 α + sin2 β) + (sin2 γ + 2 sin α sin β + 2 sin β sin γ + 2 sin γ sin α) = 0 (cos α + cos β + cos γ)2 + (sin α + sin β + sin γ)2 = 0 =(cos α + cos β + cos γ) = 0 and sin α + sin β + sin γ = 0 Hence proved |
|
| 506. |
If cosec θ – cot θ = q, then the value of cot θ is(A) 2q/1+q2(B) 2q/1-q2(C) 1-q2/2q(D) 1+q2/2q |
|
Answer» Correct option is (C) 1-q2/2q cosec θ – cot θ = q ……(i) cosec2 θ – cot2 θ = 1 ∴ (cosec θ + cot θ) (cosec θ – cot θ) = 1 ∴ (cosec θ + cot θ)q = 1 ∴ cosec θ + cot θ = 1/q …….(ii) Subtracting (i) from (ii), we get 2cot θ = 1/q - q ∴ cot θ = 1-q2/2q |
|
| 507. |
If X + Y = 90°, then express cos X in terms of simplest trigonometric ratio of Y. |
|
Answer» Given: X + Y = 90° ⇒ X= 90° - Y Multiplying both side by cos, we get = cos X = Cos (90° - Y) ⇒ cos X = sin Y [∵ Sin θ = cos (90° - θ)] |
|
| 508. |
If A+B = 90°, then fill up the blanks with suitable trigonometric ratio of complementary angle of A or B.(i) sin A =…. (ii) cos B =…(iii) sec A =…(iv) tan B =…(v) cosec B =… (vi) cot A=… |
|
Answer» (i) Here, A+B = 90° ⇒ A = 90° - B Multiplying both sides by Sin, we get Sin A = Sin (90° - B) ⇒ sin A = Cos B [∵ cos θ = sin (90° - θ)] (ii) Here, A+B = 90° ⇒ B = 90° - A Multiplying both sides by cos, we get Cos B = cos (90° - A) ⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)] (iii) Here, A+B = 90° ⇒ A = 90° - B Multiplying both sides by sec, we get Sec A = Sec (90° - B) ⇒ sec A = Cosec B [∵ cosec θ = sec (90° - θ)] (iv) Here, A+B = 90° ⇒ B = 90° - A Multiplying both sides by tan, we get tan B = tan (90° - A) ⇒ tan B = cot A [∵ cot θ = tan (90° - θ)] (v) Here, A+B = 90° ⇒ B = 90° - A Multiplying both sides by cosec, we get Cosec B = cosec (90° - A) ⇒ cosec B = sec A [∵ sec θ = cosec (90° - θ)] (vi) Here, A+B = 90° ⇒ A = 90° - B Multiplying both sides by Sin, we get cotA = cot (90° - B) ⇒ cot A = tan B [∵ tan θ = cot (90° - θ)] |
|
| 509. |
If A + B = 90°, then express cos B in terms of simplest trigonometric ratio of A. |
|
Answer» Given: A + B = 90° ⇒ B = 90° - A Multiplying both side by cos, we get = cos B = Cos (90° - A) ⇒ cos B = sin A [∵ Sin θ = cos (90° - θ)] |
|
| 510. |
Find the values of each of the following trigonometric ratios.(i) sin 300° (ii) cos (-210°) (iii) sec 390° (iv) tan (-855°) (v) cosec 1125° |
|
Answer» (i) sin 300° = sin(360° – 60°) [For 360° – 60°. No change in T-ratio. 300° lies in 4th quadrant ‘sin’ is negative] = -sin 60° = - \(\frac{\sqrt{3}}{2}\) (ii) cos(-210°) = cos 210° (∵ cos(-θ) = cos θ) [∵ 180 + 30°. No change in T-ratio. 210° lies 3rd quadrant ‘cos’ is negative] = cos(180° + 30°) = -cos 30° = - \(\frac{\sqrt{3}}{2}\) (iii) sec 390° = sec(360° + 30°) = sec 30° = \(\frac{1}{cos 30°}\) = \(\frac{1}{\frac{\sqrt{3}}{2}}\) = \(\frac{2}{\sqrt{3}}\) (iv) tan(-855°) = -tan 855° (∵ tan(-θ) = – tan θ) [∵ Multiplies of 360° are dropped out. For 180° – 45°. No change in T-ratio. 180° – 45° lies in 2nd quadrant ‘tan’ is negative] = -tan(2 x 360° + 135°) = -tan 135° = -tan(180° – 45°) = -(-tan 45°) = -(-1) = 1 (v) cosec 1125° = cosec(3 x 360°+ 45°) = cosec 45° = \(\frac{1}{sin45°}\) = \(\frac{1}{\frac{1}{\sqrt{2}}}\) = √2 |
|
| 511. |
Find the value of tan 225° |
|
Answer» tan 225° = tan (180° + 45°) = tan 45° = 1 . |
|
| 512. |
Express each of the following a sum or difference of two trigonometric functions. (i) sin 5A · cos3A (ii) cos 4A sin 2A (iii) cos \(\frac{5\theta}{2}\). sin\(\frac{\theta}{2}\) (iv) 2 cos 70° cos 10° |
|
Answer» (i) Using transformation formulae sin5A . cos3A = \(\frac{1}{2}\)[sin(5A +3A) + sin(5A – 3A)] = \(\frac{1}{2}\)(sin8A + sin2A) (ii) cos4A – sin2A = \(\frac{1}{2}\)[sin 6A – sin2A] (iii) cos \(\frac{5\theta}{2}\). sin\(\frac{\theta}{2}\) = \(\frac{1}{2}\)[sin3θ – sin2θ] (iv) 2cos70° . cos10° = 2 x \(\frac{1}{2}\)[cos80° + cos60°] = cos80° +\(\frac{1}{2}\) |
|
| 513. |
State the quadrant in which 6 lies if i. sin θ < 0 and tan θ > 0 ii. cos θ < 0 and tan θ > 0 |
|
Answer» i. sin θ < 0 sin θ is negative in 3rd and 4th quadrants, tan 0 > 0 tan θ is positive in 1st and 3rd quadrants. ∴ θ lies in the 3rd quadrant. ii. cos θ < 0 cos θ is negative in 2nd and 3rd quadrants, tan 0 > 0 tan θ is positive in 1st and 3rd quadrants. ∴ θ lies in the 3rd quadrant. |
|
| 514. |
State the signs of cot 1899° |
|
Answer» 1899° = 5 x 360° + 99° ∴ 1899° and 99° are co-terminal angles. Since 90° < 99° < 180°, 99° lies in the 2nd quadrant. ∴ 1899° lies in the 2nd quadrant. ∴ cot 1899° is negative. |
|
| 515. |
State the signs of cot sin 986° |
|
Answer» 986° = 2x 360° + 266° ∴ 986° and 266° are co-terminal angles. Since 180° < 266° < 270°, 266° lies in the 3rd quadrant. ∴ 986° lies in the 3rd quadrant. ∴ sin 986° is negative. |
|
| 516. |
State the signs of cos 4c and cos 4°. Which of these two functions is greater? |
|
Answer» Since 0° < 4° < 90°, 4° lies in the first quadrant. ∴ cos4° >0 …(i) Since 1c = 57° nearly, 180° < 4c < 270° ∴ 4c lies in the third quadrant. ∴ cos 4c < 0 ………(ii) From (i) and (ii), cos 4° is greater. |
|
| 517. |
What is the value of tan (–1575°)?(a) 1 (b) \(\frac12\) (c) 0 (d) –1 |
|
Answer» (a) 1 tan (– 1575°) = – tan (1575°) (∵ tan (–θ) = – tanθ) = – tan (4 × 360° + 135°) = – tan (135°) (∵ tan (n.360° + θ) = tan θ) = – tan (90° + 45°) (∵ tan (90° + θ) = – cot θ) = – (– cot 45°) = cot 45° = 1. |
|
| 518. |
cos 1° + cos 2° + cos 3° + ........ + cos180° is equal to(a) –1(b) 0(c) 1(d) 2 |
|
Answer» (a) -1 cos 1° + cos 2° + cos 3° + ........ + cos 180° = (cos 1° + cos 179°) + (cos 2° + cos 178°) + ........ + (cos 89° + cos 91°) + cos 90° + cos 180º = [cos 1° + cos (180° – 1°)] + [cos 2° + cos (180° – 2°)] + ....... + [cos 89° + cos (180° – 91°)] + cos 90° + cos 180° = (cos 1° – cos 1°) + (cos 2° – cos 2°) + ....... + (cos 89° – cos + 89°) + 0 + (– 1) = – 1. (∵ cos (180° – θ) = – cos θ) |
|
| 519. |
If A, B, C, D are the successive angles of a cyclic quadrilateral, then what is cos A + cos B + cos C + cos D equal to:(a) 4 (b) 2 (c) 1 (d) 0 |
|
Answer» (d) 0 In a cyclic quadrilateral, the sum of the opposite angles is 180°. ⇒ A + C = 180° and B + D = 180° ∴ cos A + cos B + cos C + cos D = cos A + cos B + cos (180° – C) + cos (180° – B) = cos A + cos B – cos A – cos B = 0. |
|
| 520. |
Prove the following: sin 6x + sin 4x – sin 2x = 4 cos x sin 2x cos 3x |
|
Answer» = 2sin (\(\frac{6x+4x}{2}\)) cos (\(\frac{6x-4x}{2}\)) – 2 sin x cos x = 2 sin 5x cos x — 2 sin x cos x = 2 cos x (sin 5x — sin x) = 2 cos[2 cos(\(\frac{5x+x}{2}\)) sin (\(\frac{5x-x}{2}\))] = 2 cos x (2 cos 3x sin 2x) = 4 cos x sin 2x cos 3x = R.H.S. |
|
| 521. |
\(\bigg[1+cos\fracπ8\bigg]\)\(\bigg[1+cos\frac{3π}8\bigg]\)\(\bigg[1+cos\frac{5π}8\bigg]\)\(\bigg[1+cos\frac{7π}8\bigg]\) is equal to(a) \(\frac18\) (b) \(\frac12\)(c) \(\frac{1+\sqrt2}{2\sqrt2}\)(d) cos\(\fracπ8\) |
|
Answer» (a) \(\frac18\) \(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1+cos\frac{5π}8\bigg)\)\(\bigg(1+cos\frac{7π}8\bigg)\) = \(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1+cos\bigg(π-cos\frac{3π}8\bigg)\bigg)\)\(\bigg(1+cos\bigg(π-\frac{π}8\bigg)\bigg)\) = \(\bigg(1+cos\fracπ8\bigg)\)\(\bigg(1+cos\frac{3π}8\bigg)\)\(\bigg(1-cos\frac{3π}8\bigg)\)\(\bigg(1-cos\frac{π}8\bigg)\) (∵cos (π – θ) = – cos θ) = \(\bigg(1-cos^2\fracπ8\bigg)\)\(\bigg(1-cos^2\frac{3π}8\bigg)\) = sin2 \(\fracπ8\) sin2 \(\frac{3π}8\) = sin2 \(\fracπ8\) cos2 \(\frac{π}8\) \(\bigg(∵ sin\frac{3π}{8}= sin\bigg(\fracπ2-\fracπ8\bigg)=cos\fracπ8\bigg)\) = \(\frac14\bigg(4\,sin^2\fracπ8cos^2\fracπ8\bigg)\) = \(\frac14\bigg(2\,sin\fracπ8\,cos\fracπ8\bigg)^2\) = \(\frac14\big(sin\fracπ4\big)^2\,\frac14\big(\frac1{\sqrt2}\big)^2=\frac18.\) (Using, 2 sin θ cos θ = sin 2θ) |
|
| 522. |
Find the values of cot 225° |
|
Answer» cot 225° = \(\frac{1}{ tan 225°}=\frac{1}{tan(180°+45°)}\) = \(\frac{1}{(\frac{tan180°+tan 45°}{1-tan180° tan 45°})}\) = \(\frac{1}{(\frac{0+1}{1-0(1)})}\) = \(\frac{1}{(\frac{1}{1})}\) =1 |
|
| 523. |
Find the value of cot (-1110°) |
|
Answer» cot (-1110°) =-cot (1110°) = -cot (1080°+ 30°) = – cot (3 x 360° + 30° ) = – cot 30° = √3 |
|
| 524. |
Find the value of cos 600° |
|
Answer» cos 600° = cos (360° + 240°) = cos 240° = cos (180° + 60°) = – cos 60° = - 1/2 |
|
| 525. |
Find the value of cos 315° |
|
Answer» cos 315° = cos (270° + 45°) sin 45° = 1/√2 |
|
| 526. |
The value of cos(-480°) is: (a) √3 (b) \(-\frac{\sqrt{3}}{2}\)(c) \(\frac{1}{2}\)(d) \(\frac{-1}{2}\) |
|
Answer» (d) \(\frac{-1}{2}\) cos(-480°) = cos 480° [∵ cos(-θ) = cos θ] = cos(360° + 120°) = cos 120° = cos(180° – 60°) = -cos 60° = \(\frac{-1}{2}\) |
|
| 527. |
If 2x2 cos 60° – 4 cot2 45° – 2 tan 60° = 0, what is the value of x?(a) 2 (b) 3 (c) √3 - 1(d) √3 +1 |
|
Answer» (d) √3+1 2x2 cos 60° – 4 cot2 45° – 2 tan 60° = 0 ⇒ 2x2 x \(\frac12\) - 4 x (1)2 - 2 x √3 = 0 ⇒ x2 - 4 - 2√3 = 0 ⇒ x2 = 4 + 2√3 ⇒ x2 = 3 + 1 + 2√3 ⇒ x2 = (√3)2 + (1)2 + 2√3 ⇒ x2 = (√3 + 1)2 ⇒ x = √3+1. |
|
| 528. |
The cotangent of the angles \(\fracπ3\), \(\fracπ4\) and \(\fracπ6\) are in(a) A.P (b) G.P. (c) H.P. (d) None of these |
|
Answer» (b) G.P cot \(\fracπ3\) = cot 60° = \(\frac{1}{\sqrt3}\), + cot \(\fracπ4\) = cot 45° = 1, cot \(\fracπ6\) = cot 30° = √3 We can see that \(\bigg(cot \fracπ3\bigg).\bigg(cot\bigg(\frac{π}{6}\bigg)\bigg)=\frac{1}{\sqrt3}.\sqrt3=1=\bigg(cot\frac{π}{4}\bigg)^2\) ∴ cot \(\fracπ3\), cot \(\fracπ4\), cot \(\fracπ6\) are in G.P |
|
| 529. |
If 2 sin 2θ = √3, prove that θ = 30°. |
|
Answer» 2 sin 2θ = √3 => sin(2θ) = √3/2 => sin(2θ) = sin(60°) => 2θ = 60° => θ = 60°/2 => θ = 30° |
|
| 530. |
The value of the expression cos1°. cos2°. cos3° … cos 179° = (A) -1 (B) 0(C) 1/√2(D) 1 |
|
Answer» Correct answer is (B) 0 Explanation : cos 1° cos 2° cos 3° … cos 179° = cos 1° cos 2° cos 3° … cos 90°… cos 179° = 0 …[∵ cos 90° = 0] |
|
| 531. |
The value of \(\frac{cos^3 20° - cos^3 70°}{sin^3 70° - sin^3 20°}\) is A. 1/2 B. 1/√2 C. 1 D.2 |
|
Answer» \(\frac{cos^3 20° - cos^3 70°}{sin^3 70° - sin^3 20°}\) = \(\frac{cos^3 20° - cos^3 (90°-20°)}{sin^3 (90°-20°) - sin^3 20°}\) \(\frac{cos^3 20° - sin^3 20°}{cos^3 20° - sin^3 60°}\) = 1 |
|
| 532. |
Prove that (sin4θ – cos4θ +1) cosec2θ = 2 |
|
Answer» Solution : L.H.S. = (sin4θ – cos4θ +1) cosec2θ = [(sin2θ – cos2θ) (sin2θ + cos2θ) + 1] cosec2θ = (sin2θ – cos2θ + 1) cosec2θ [Because sin 2θ + cos2θ =1] = 2sin2θ cosec2θ [Because 1– cos 2θ = sin2θ ] = 2 = RHS |
|
| 533. |
The most general solution of the equation sec2 x = \(\sqrt{2}\) (1 – tan2 x ) are given by (a) nπ ± \(\frac{π}{4}\)(b) 2nπ ± \(\frac{π}{4}\) (c) nπ ± \(\frac{π}{8}\)(d) None of these |
|
Answer» Answer : (c) nπ ± \(\frac{\pi}{8}\) sec2 x = \(\sqrt{2}\) (1 - tan2 α) ⇒ tan2 α + 1 = \(\sqrt{2}\) (1 – tan2 α ) ⇒ tan2 α (1 + \(\sqrt{2}\) ) = \(\sqrt{2}\) – 1 ⇒ tan2 α = \(\frac{\sqrt{2} -1}{\sqrt{2} +1}\) = \(\frac{(\sqrt{2} -1)^2}{(\sqrt{2}+1)(\sqrt{2}-1)}\) = \((\sqrt{2}-1)^2\) = \({tan}^2\,\frac{\pi}{8}\) ∴ tan α = tan \(\big(± \frac{\pi}{8}\big)\) α = nπ ± \(\frac{\pi}{8}\) |
|
| 534. |
(i) 9 sec2 A – 9 tan2 A =(A) 1 (B) 9 (C) 8 (D) 0(ii) (1 + tanθ+ secθ) (1 + cotθ– cosecθ) =(A) 0 (B) 1 (C) 2 (D) –1(iii) (sec A + tan A) (1 – sin A) =(A) sec A (B) sin A (C) cosec A (D) cos A(iv) (1 + tan2 A)/(1 + cot2 A) = (A) sec2 A (B) –1 (C) cot2 A (D) tan2 A |
|
Answer» Answer (i) (B) is correct. 9 sec2A - 9 tan2A = 9 (sec2A - tan2A)
(1 + tan θ + sec θ) (1 + cot θ - cosec θ) = (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ) = (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ = (cos θ+sin θ)2-12/(cos θ sin θ) = (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ) = (1+ 2cos θ sin θ -1)/(cos θ sin θ) = (2cos θ sin θ)/(cos θ sin θ) = 2
(secA + tanA) (1 - sinA) = (1/cos A + sin A/cos A) (1 - sinA) = (1+sin A/cos A) (1 - sinA) = (1 - sin2A)/cos A = cos2A/cos A = cos A
1+tan2A/1+cot2A = (1+1/cot2A)/1+cot2A = (cot2A+1/cot2A)×(1/1+cot2A) = 1/cot2A = tan2A |
|
| 535. |
Find the value of x in each of the following: 2sin 3x = √3 |
|
Answer» 2sin 3x = √3 ⇒ sin 3x = \(\frac{\sqrt{3}}{2}\) ⇒ sin 3x = sin 60° ⇒ 3x = 60° ⇒ x = 20° |
|
| 536. |
Prove that (sec θ + cos θ) (sec θ – cos θ) = tan2 θ + sin2 θ |
|
Answer» (sec θ + cos θ) (sec θ – cos θ) = sec2 θ – cos2 θ = (1 + tan2 θ) – (1 – sin2 θ) = tan2 θ + sin2 θ = RHS |
|
| 537. |
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = π/2 |
|
Answer» Taking A + B = X and C = Y We get cos (X + Y) = cos X cos Y – sin X sin Y (i.e) cos (A + B + C) = cos (A + B) cos C – sin (A + B) sin C = (cos A cos B – sin A sin B) cos C – [sin A cos B + cos A sin B] sin C cos (A + B + C) = cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C If (A + B + C) = π/2 then cos (A + B + C) = 0 ⇒ cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C = 0 ⇒ cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B |
|
| 538. |
Prove that cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 1/2 |
|
Answer» cos 204° = cos (180°+ 24°) = – cos 24° cos 125° = cos (180° – 55°) = – cos 55° LHS = cos 24° + cos 55° + (- cos 55°) + (- cos 24°) + cos 300° = cos 24° + cos 55° – cos 55° – cos 24° + cos 300° = cos 300° = cos(360° - 60°) = cos 60° = 1/2 = RHS |
|
| 539. |
Prove that sin (270° – θ) sin (90° – θ) – cos (270° – θ) cos (90° + θ) + 1 = 0 |
|
Answer» LHS = sin (270° – θ) sin (90° – θ) – cos (270° – θ) cos (90° + θ) + 1 Now, sin (270° – θ) = sin {180°+ (90°- θ)} = – cos (90° – θ) = – sin θ LHS = – cos θ . cos θ – (- sin θ) (- sin θ) + 1 = – cos2 θ – sin2 θ + 1 = – (cos2 θ + sin2 θ) + 1 = -1 + 1 = 0 = RHS |
|
| 540. |
Prove that [1 + cot α - sec(α + (π/2))][1 + cot α + sec(α + (π/2))] = 2cot α |
|
Answer» sec(α + π/2) = - cosec α LHS = [(1 + cot α) + cosec α][(1 + cot α) – cosec α] = (1 + cot α)2 – cosec2 α = 1 + cot2 α + 2 cot α – cosec2 α [∵ 1 + cot2 α = cosec2 α] = cosec2 α + 2 cot α – cosec2 α = 2 cot α = RHS |
|
| 541. |
Prove the following:sin 18° = √5-1/4 |
|
Answer» Let θ = 18° ∴ 5θ = 90° ∴ 2θ + 3θ = 90° ∴ 2θ = 90° – 3θ ∴ sin 2θ = sin (90° – 3θ) ∴ sin 2θ = cos 3θ ∴ 2 sin θ cos θ = 4 cos3 θ – 3 cos θ ∴ 2 sin θ = 4 cos2 θ – 3 …..[∵ cos θ ≠ 0] ∴ 2 sin θ = 4 (1 – sin2 θ) – 3 ∴ 2 sin θ = 1 – 4 sin2 θ ∴ 4 sin2 θ + 2 sin θ – 1 = 0 ∴ sin θ = \(\frac{-2±\sqrt{4+16}}{8}\) =\(\frac{-2±2\sqrt5}{8}\) =\(\frac{-1±\sqrt5}{4}\) Since, sin 18° > 0 ∴ sin 18°=\(\frac{\sqrt5-1}{4}\) |
|
| 542. |
Prove the following:3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) = 13 |
|
Answer» (sin x – cos x) sin6 x + cos6 x = (sin2 x)3 + (cos2 x)3 = (sin2 x + cos2 x)3 – 3 sin2 x cos2 x (sin2 x + cos2 x) ….. [∵ a3 + b3 = (a + b)3 – 3ab(a + b)] = 13 – 3 sin2 x cos2 x (1) = 1 – 3 sin2 x cos2 x L.H.S. = 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) = 3(1 – 4 sin x cos x + 4 sin2 x cos2 x) + 6(1 + 2 sin x cos x) + 4(1 – 3 sin2 x cos2 x) = 3 – 12 sin x cos x + 12 sin2 x cos2 x + 6 + 12 sin x cos x + 4 – 12 sin2 x cos2 x = 13 = R.H.S. |
|
| 543. |
Find the value of sin 495° |
|
Answer» sin 495° = sin (360° + 135°) = sin (135°) = sin (90° + 45°) = cos 45° = 1/√2 |
|
| 544. |
Find the value of sin 690° |
|
Answer» sin 690° = sin (720° -30°) = sin (2 x 360° – 30°) = – sin 30° = -1/2 |
|
| 545. |
Find the value of tan (- 690°) |
|
Answer» tan (- 690°) = – tan 690° = – tan (720° – 30°) = – tan (2 x 360° – 30°) = – (- tan 30°) = tan 30° = 1/√3 |
|
| 546. |
Find the values of tan 105° |
|
Answer» tan 105° = tan (60° +45°) = \(\frac{tan60°+tan45°}{1-tan60° tan 45°}\) =\(\frac{\sqrt3+1}{1-(\sqrt3)(1)}\) =\(\frac{\sqrt3+1}{1-\sqrt3}\) |
|
| 547. |
Find the values of sin 75° |
|
Answer» cos 75° = cos (45° + 30°) = cos 45° cos 30° – sin 45° sin 30° =(1/√2) (√3/2) - (1/√2) (1/2) = \(\frac{\sqrt3-1}{2\sqrt2}\) |
|
| 548. |
Express cos 75° + cot 75° in terms of angles between 0° and 30°. |
|
Answer» Given, cos 75° + cot 75° Since, cos (90 – θ) = sin θ and cot (90 – θ) = tan θ cos 75° + cot 75° = cos (90 – 15)° + cot (90 – 15)° = sin 15° + tan 15° Hence, cos 75° + cot 75° can be expressed as sin 15° + tan 15°. |
|
| 549. |
Evaluate:sec 50° sin 40° + cos 40° cosec 50° |
|
Answer» We know that, sin (90 – θ) = cos θ and cos (90 – θ) = sin θ So, the given can be expressed as sec 50° sin (90 – 50)° + cos (90 – 50)° cosec 50° = sec 50° cos 50° + sin 50° cosec 50° = 1 + 1 [∵ sin θ x cosec θ = 1 and cos θ x sec θ = 1] = 2 |
|
| 550. |
If Sin A = \(\frac{1}{2}\) and Cos B = \(\frac{1}{2}\) then find the value of (A + B). |
|
Answer» Given Sin A = \(\frac{1}{2}\) Sin A = Sin 30° Now, A = 30° ----(1) Cos B = \(\frac{1}{2}\) Cos B = Cos 60° B = 60° ----(2) Now, Value of (A + B) = 30° + 60° [ from (1)&(2) ] = 90° Therefore,. A + B = 90° |
|