Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

651.

If sin 52° = a, then express sin 38° in terms of a.

Answer»

Given sin 52° = a

We know that sin θ = cos (90° - θ)

Here, θ = 52°

⇒ cos (90° - 52°) = a

⇒ cos 38° = a

652.

If cos 47° = a, then express sin 43° in terms of a.

Answer»

Given cos 47° = a

We know that cos θ = sin (90° - θ)

Here, θ = 47°

⇒ sin (90° - 47°) = a

⇒ sin 43° = a

653.

One of the solutions of the equation 4 sin4 x + cos4 x = 1 is (a) nπ (b) \(\frac{2nπ}{3}\)(c) \((n-1) \frac{\pi}{4}\) (d) \((2n+1)\frac{\pi}{2}\)

Answer»

Answer : (a) nπ 

4 sin4 x + cos4 x = 1 

⇒ 4 sin4 x + (1 – sin2x) 2 = 1 

⇒ 4 sin4x + 1 + sin4x – 2 sin2x = 1 

⇒ 5 sin4x – 2 sin2x = 0 

⇒ sin2x (5 sin2x – 2) = 0 

⇒ sin2x = 0 or 5 sin2x – 2 = 0

⇒ sin x = 0 or sin x = \(\sqrt{\frac{2}{5}}\) 

⇒ x = nπ or x = sin–1 ( \(\sqrt{\frac{2}{5}}\) )

= nπ + (–1)n sin–1  ( \(\sqrt{\frac{2}{5}}\) ), n ∈ I

x = nπ is one of the solutions of the given equation.

654.

The number of values of x in the interval [0, 5π] satisfying the equation 3 sin2 x – 7sinx + 2 = 0 is(a) 0 (b) 5(c) 6 (d) 10

Answer»

Answer : (c) 6 

3 sinx – 7 sin x + 2 = 0 

⇒ (3 sin x – 1) (sin x – 2) = 0 

⇒ (3 sin x – 1) = 0 or (sin x – 2) = 0 

∵ sin x = 2 is inadmissible, therefore, sin x = \(\frac{1}{3}\)

Since, sin x = sin α where sin α = \(\frac{1}{3}\) , so α lies in the 1st quadrant 

⇒ x = nπ + (–1)n α, n∈I, where 0 < α < π/2 

Since x lies in the interval [0, 5π], so we have one value of x corresponding to each of the values 0, 1, 2, 3, 4, 5 or n. 

∴ The number of values of x in the interval [0, 5π] is 6.

655.

A peacock is sitting on the tree and observes its prey on the ground. It makes an angle of depression of `22^(@)` to catch the prey. The speed of the peacock was observed to be 10 km/hr and it catches its prey in 1 min 12 seconds. At what height was the peacock on the tree? `(cos 22^(@)=0.927, sin 22^(@)=0.374, tan 22^(@)=0.404)`

Answer» Correct Answer - 74.8 m
656.

If sin4x + sin2x = 1 then what is 1 are the value of cot4x + cot2x?(a) cos2x (b) sin2x (c) tan2x (d) 1

Answer»

(d) 1

sin4x + sin2x = 1 

⇒ sin4x = 1 – sin2

⇒ sin4x = cos2x              ...(i) 

∴ cot4x + cot2

= cot2x (1 + cot2x) = cot2x . cosec2x

\(=\frac{cos^2\,x}{sin^2\,x.sin^2\,x}=\frac{cos^2\,x}{sin^4\,x}\)

\(=\frac{cos^2\,x}{cos^2\,x}\) = 1.                       [Using (i)]

657.

If a sin θ + b cos θ = c, what is/are the values of (a cos θ – b sin θ)?(a) c – a + b (b) c – b + a (c) \(±\sqrt{a^2+b^2-c^2}\)(d) \(±\sqrt{c^2+b^2-a^2}\)

Answer»

(c) \(±\sqrt{c^2+b^2-a^2}\)

Given, a sin θ – b cos θ = c 

(a cos θ – b sin θ)2 

= a2 cos2θ – 2ab cos θ sin θ + b2 sin2θ 

= a2 (1 – sin2θ) – 2(a sin θ) (b cos θ) + b2 (1 – cos2θ) 

= a2 – a2 sin2θ – 2 (a sin θ) (b cos θ) + b2 – b2 cos2θ 

= a2 + b2 – [a2 sin2θ + 2 (a sin θ) (b cos θ) + b2 cos2θ] 

= a2 + b2 – (a sin θ + b cos θ)2 = a2 + b2 – c2 

⇒ (a cos θ – b sin θ) = \(±\sqrt{c^2+b^2-a^2}\)

658.

What is the value of sin A cos A tan A + cos A sin A cot A ? (a) sin2A + cos A (b) sin2A + tan2 A (c) sin2A + cot2 A (d) cosec2A – cot2 A

Answer»

(d) cosec2 A – cot2 A.

sin A cos A tan A + cos A sin A cot A 

= sin A cos A . \(\frac{sin\,A}{cos\,A}\) + cos A sin A \(\frac{cos\,A}{sin\,A}\)

= sin2 A + cos2 A = 1 = cosec2 A – cot2 A.

659.

cos α sin (β – γ) + cos β sin (γ – α) + cos γ sin (α – β) is equal to(a) 0 (b) \(\frac12\) (c) 1 (d) 4 cos α cos β cos g

Answer»

(a) 0

cos α sin (β – γ) + cos β sin (γ – α) + cos γ sin (α – β) 

= cos α [sin β cos γ – cos β sin γ] + cos β [sin γ cos α – cos α sin β] + cos γ [sin α cos β – cos α sin β] 

= cos α sin β cos γ – cos α cos β sin γ + cos β sin γ cos α – cos β cos α sin γ + cos γ sin α cosβ – cos γ cos α sin β 

= 0.

660.

Write the value of tan-1[tan 3π/4].

Answer»

tan-1[tan3π/4] = tan-1(tan(π-π/4))

= tan-1(tan π/4)

Since tan-1(tanx) = x if x ∈ (-π/2,π/2)

Here π/4 ∈ (-π/2,π/2)

= π/4

661.

If `AxxB=1, A+B="cosec"theta*sec theta` then `(A)/(B)` can be _______A. `tan^(2) theta `B. `sec^(2) theta `C. `sin^(2)theta cos^(2) theta `D. `"cosec"^(2) theta sec^(2)theta `.

Answer» Correct Answer - A
`AB=1impliesA=(1)/(B)`
`A+B=(1)/(sin theta)(1)/(costheta)=(1)/(sin theta cos theta )=(sin^(2)theta+cos^(2)theta)/(sin theta cos theta)`
`A+B=(sin theta)/(costheta)+(cos theta )/( sin theta )`
`A+B=tan theta + cot theta`.
Since,`tan theta xx cot theta=1=AB`.
`:. A= tan theta, B=cot theta`.
`(A)/(B)=(tan theta )/( cot theta )=tan theta * tan theta =tan^(2)theta`.
`A= cot theta, B=tan theta,(A)/(B)=cot^(2)theta`
662.

If `sin(A+B)=(sqrt(3)+1)/(2sqrt(2))` and `secA=2`, then the value of B in circular measure is _____A. `(pi)/(12)`B. `(3pi)/(5)`C. `(7pi)/(5)`D. `(5pi)/(12)`

Answer» Correct Answer - A
`sin(A+B)=(sqrt(3)+1)/(2sqrt(2))`
`sin(A+B)=sin75^(@)`
`A+B=75^(@)`
` secA=2`
`secA=sec60^(@)`
`A=60^(@)`
Substitute the value of A in Eq. (1),
`60^(@)+B=75^(@)`
`B=15^(@)`
In circular measure,
`B=150^(@)xx(pi)/(180^(@))=(pi^( c))/(12)`.
663.

If `7sin^(2)theta+3cos^(2)theta=4`, then find `tan theta`.A. `(1)/(sqrt(3))`B. `(2)/(sqrt(3))`C. `sqrt(3)`D. `1`

Answer» Correct Answer - A
`3 sin^(2) theta+4 sin^(2) theta+3 cos^(2) theta=4`
`3+4 sin^(2) theta=4`
`4 sin^(2) theta=1`
`sin theta=(1)/(sqrt(4))=(1)/(2)`
`theta=30^(@)`.
`:. tan theta =(1)/(sqrt(3))`.
664.

Given that sin α = \(\frac{1}{2}\) and cos β = \(\frac{1}{2}\), then the value of α + β is (1) 0° (2) 90° (3) 30° (4) 60°

Answer»

(2) 90°

sin α = \(\frac{1}{2}\), cos β = \(\frac{1}{2}\)

α + β = 90°

665.

If cos α + cos β + cos γ = 0, then prove that cos 3α + cos 3β + cos 3γ = 12 cos α cos β cos γ .

Answer»

cos 3α + cos 3β + cos 3γ = (4 cos3α - 3 cos3α ) + (4 cos3 β – 3 cos β) + (4 cos3 γ – 3 cos γ) 

= 4(cos3 α + cos3 β + cos3 γ) – 3(cos α + cos β + cos γ) 

= 4(cos3 α + cos3 β + cos3 γ) – 3 × 0 = 4 (cos3 α + cos3 β + cos3 γ) 

= 4 × 3 cos α cos β cos γ       ( a + b + c = 0 ⇒ a3 + b3 + c3 = 3abc) 

= 12 cos α cos β cos γ.

666.

If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = \(\frac{a^2+b^2-2}{2}\)

Answer»

Consider a2 + b2 = sin2 α + sin2 β + 2 sin α sin β + cos2 α + cos2 β + 2 cos α cos β 

a2 + b2 = (sin2 α + cos2 α) + (sin2 β + cos2 β) + 2[cos α cos β + sin α sin β] 

a2 + b2 = 1 + 1 + 2 cos(α – β) 

∴ cos(α – β) = \(\frac{a^2+b^2-2}{2}\)

667.

If 4nα = π, then the value of cotα .cot2α.cot3α..............cot(2n–1)α is(a)   1(b)   –1(c)  ∞(d)  None of these

Answer»

Correct option (a) 1

Explanation:

cotα.cot(2n–1)α = cotα.cot(2nα – α) = cotα.cot (π/2 -α) = cotα.tanα = 1

Product of terms equidistant from the beginning and end is 1 The middle term is cotnα = cotπ/4 = 1

668.

If a cos θ + b sin θ = m and a sin θ - b cos θ = n, prove that m2 + n2 = a2 + b2 

Answer»

Given, 

m2 = a2 cos2 θ + 2 ab sin θ cos θ + b2 sin2θ

and

n2 = a2 sin2 θ-2 ab sin θ cos θ + b2cos2 θ

Adding equations (i) and (ii)

m2 + n2 = a2 (cos2 θ + sin2 θ) + b2(cos2θ + sin2 θ)

= a2 (1) + b2 (1)

= a2 + b2 = RHS

669.

The equation 3 sin2 x + 10 cos x – 6 = 0 is satisfied, if (a) x = nπ ± cos–1 \(\big(\frac{1}{3}\big)\) (b)  x = 2nπ ± cos–1 \(\big(\frac{1}{3}\big)\) (c)  x = nπ ± cos–1 \(\big(\frac{1}{6}\big)\) (d)  x = 2nπ ± cos–1 \(\big(\frac{1}{6}\big)\) 

Answer»

Answer: (b)  2nπ ±  cos–1 \(\big(\frac{1}{3}\big)\) 

3 sin2 x + 10 cos x – 6 = 0 

⇒ 3 (1 – cos2 x) + 10 cos x – 6 = 0 

⇒ – 3 cosx + 10 cos x – 3 = 0 

⇒ (cos x – 3) (1 – 3 cos x) = 0 

⇒ cos x = 3 or cos x = \(\frac{1}{3}\)

Since cos x = 3 is inadmissible, therefore, cos x = \(\frac{1}{3}\)

⇒ x = cos–1 \(\big(\frac{1}{3}\big)\) 

The general solution is  

x = 2nπ ±  cos–1 \(\big(\frac{1}{3}\big)\) 

670.

If tan θ + sec θ = √3, then the principal value of θ + \(\frac{π}{6}\) is equal to (a) \(\frac{π}{4}\)(b) \(\frac{π}{3}\) (c) \(\frac{2π}{3}\) (d) \(\frac{3π}{4}\)

Answer»

Answer: (b) = \(\frac{π}{3}\)

tan θ + sec θ = √3

⇒ \(\frac{sin\,\theta}{cos\,\theta}\) + \(\frac{1}{cos\,\theta}\) = √3 

⇒ sin θ + 1 = √3 cos θ

⇒ \(\frac{\sqrt{3}}{2}\) cos θ – \(\frac{1}{2}\) sin θ = \(\frac{1}{2}\) 

⇒ cos (θ + \(\frac{π}{6}\)) = cos\(\frac{π}{3}\)

⇒ Principal value of θ + \(\frac{π}{6}\) = \(\frac{π}{3}\).

671.

The solution of equation cos2 θ + sin θ + 1 = 0 lies in the interval:(a)  \(\big(- \frac{π}{4} , \frac{π}{4}\big)\)(b) \(\big( \frac{π}{4} , \frac{3π}{4}\big)\)(c) \(\big( \frac{3π}{4} , \frac{5π}{4}\big)\)(d) \(\big( \frac{5π}{4} , \frac{7π}{4}\big)\)

Answer»

Answer : (d) \(\big( \frac{5π}{4},\frac{7π}{4}\big)\)

cos2 θ + sin θ + 1 = 0 

⇒ (1 – sin2 θ) + sin θ + 1 = 0 

⇒ sinθ – sin θ – 2 = 0 

⇒ (sin θ + 1) (sin θ – 2) = 0 

⇒ (sin θ + 1) = 0 or (sin θ – 2) = 0 

⇒ sin θ = –1 (∵ sin θ = 2 is inadmissible) 

⇒ sin θ = sin \(\frac{3π}{2}\) 

θ = \(\frac{3π}{2}\) ∈ \(\big( \frac{5π}{4},\frac{7π}{4}\big)\) 

672.

Find the value of cosec 780°

Answer»

cosec 780° = cosec (720° + 60°) 

= cosec (2 x 360° + 60°) 

= cosec 60°

= 2√3

673.

Find the value of  sec (-855°)

Answer»

sec (-855°) = sec (855°) 

= sec (720°+135°)

= sec (2 x360°+ 135°) = sec 135° 

= sec (90° + 45°) 

= – cosec 45°

= -√2

674.

Find the value of  sec 240°

Answer»

sec 240° = sec (180° + 60°) 

= – sec 60° 

= – 2

675.

Given ∠A = 75°, ∠B = 30°, then tan (A-B) = ………A) √3B) 1/√3C) 1D) 1/√2

Answer»

Correct option is: C) 1

<A = \(75^\circ\) & B = \(30^\circ\)

\(\therefore\) A -B = \(75^\circ\) -  \(30^\circ\) = \(45^\circ\)

\(\therefore\) tan (A-B) = tan (\(45^\circ\)) = 1

Correct option is: C) 1

676.

If sin x = 5/7, then cosec x = …………A) 5/7B) 7/5C) 2/5D) 2/7

Answer»

Correct option is: B) \(\frac{7}{5}\)

We have 

sin x = \(\frac 57\)

\(\therefore\) cosec x = \(\frac 1{sin \, x} = \frac {1}{\frac 57} = \frac 75\)

Correct option is: B) \(\frac{7}{5}\)

677.

tan θ is not defined when ‘θ’ isA) 0° B) 30° C) 60° D) 90°

Answer»

Correct option is: D) 90°

\(\because\) tan \(\theta\) is not defined at \(90^\circ\).

\(\therefore\) Among given angles tan \(\theta\) is not defined at only \(90^\circ\).

Correct option is: D) 90°

678.

It tan θ = 1/√3, then 7 sin2θ + 3 cos2θ =A) 16/4B) 7/4C) 9/4D) 1

Answer»

Correct option is: A) \(\frac {16}4\)

We have tan \(\theta\) = \(\frac 1{\sqrt3} = tan \, 30^\circ\)

 = \(\theta\) = \(30^\circ\)

Now \(7\, sin^2\theta + 3\, cos^2\theta = 7\, sin^2\,30^\circ + 3\, cos^2\, 30^\circ\).

= 7 \(\times (\frac 12)^2 + 3 (\frac {\sqrt3}{2})^2 \) (\(\because\) sin \(30^\circ\) = \(\frac 12\) & cos \(30^\circ\) = \(\frac {\sqrt3}2\).

\(\frac 74 + 3 \times \frac 34 = \frac 74 + \frac 94 = \frac {16}4 = 4\)

Alternative method :

We have tan \(\theta\) = \(\frac 1{\sqrt3} \)

\(\therefore\) \(Sec^2\theta = 1 + tan^2\theta = 1 + (\frac 1{\sqrt3})^2 = 1+ \frac 13 = \frac 43\)

Now, \(7\, sin^2\theta + 3\, cos^2\theta = \frac {7\, sin^2\theta + 3\, cos^2\theta}{cos^2\theta}.cos^2\theta\).

\(\frac {(7\, tan^2\theta + 3)}{sec^2\theta}\) (\(\because\) \(\frac 1{cos\theta} = sec \theta\))

\(\frac {7\times \frac 13 + 3}{\frac 43}\)

\(\frac {\frac {7+9}{3}}{\frac 43} = \frac {16}4 = 4\).

Correct option is: A) \(\frac{16}{4}\)

679.

If sec θ + tan θ = 1/3, then sec θ – tan θ = ………A) 3B) 1/3C) 1D) 0

Answer»

Correct option is: A) 3

sec \(\theta\) + tan \(\theta\) = \(\frac{1}{3}\)

= ( sec \(\theta\) + tan \(\theta\)) ( sec \(\theta\) - tan \(\theta\)) = \(\frac{1}{3}\) ( sec \(\theta\) - tan \(\theta\))

(Multiplying both sides by (sec \(\theta\) - tan \(\theta\)))

\(sec^2\theta - tan^2\theta = \frac 13 ( sec\, \theta - tan \, \theta)\) (\(\because\) (a + b ) (a - b) = \(a^2-b^2\))

= sec \(\theta\) - tan \(\theta\) = 3 (\(sec^2 \theta - tan^2\theta\)) = 3 (\(\because\) \(Sec^2 \theta - tan ^2 \theta = 1\))

Hence, if sec \(\theta\) + tan \(\theta\) = \(\frac{1}{3}\) then sec \(\theta\) - tan \(\theta\) = 3

Correct option is: A) 3

680.

Show that tan2 θ + cot2 θ ≥ 2 for all θ ∈ R

Answer»

tanθ + cot2 θ = tanθ + 1/tanθ 

(tan θ)2 + (1/tan θ)2

= (tan θ - 1/ tan θ)2 + 2tan θ1/ tan θ

                ...[∴a2 + b2 = (a-b)2 + 2ab]

= (tan θ - 1/ tan θ)+ 2 ≥ 2 for all θ ∈R.

681.

Prove the following:sin 36° = \(\frac{\sqrt{10-2\sqrt5}}{4}\)sin 36° = (√10-2√5)/4

Answer»

We know that, sin2 θ = 1 – cos θ sin2 36° = 1 – cos2 36°

= 1-(\(\frac{\sqrt{5+1}}{4}\))2

=\(\frac{16-(5+1+2\sqrt5)}{16}\)

\(\frac{10-2\sqrt5}{16}\)

∴ sin 36° = \(\frac{\sqrt{10-2\sqrt5}}{4}\)……[∵ sin 36° is positive]

682.

Prove the following:   sin [(n+1)A] . sin [(n+2)A] + cos [(n+1)A] . cos [(n+2)A] = cos A 

Answer»

L.H.S. = sin [(n + 1)A] . sin [(n + 2)A] + cos [(n + 1)A] . cos [(n + 2)A] 

= cos [(n + 2)A] . cos [(n + 1)A] + sin [(n + 2)A] . sin [(n + 1)A] Let(n+2)Aa and(n+l)Ab …(i) 

∴ L.H.S. = cos a. cos b + sin a. sin b 

= cos (a — b) 

= cos [(n + 2)A — (n + I )A] 

…[From (i)] 

cos[(n+2 – n – 1)A] 

= cos A 

= R.H.S.

683.

Prove the following :cos (x + y). cos (x – y) = cos2 y – sin2 x

Answer»

L.H.S. = cos(x + y). cos(x – y) 

= (cos x cos y – sin x sin y). (cos x cos y + sin x sin y) 

= cos2 x cos2 y – sin2 x sin2

…[∵ (a – b) (a + b) = a2 – b2

= (1 – sin2 x) cos2 y – sin2 x (1 – cos2 y) 

…[∵ sin2 e + cos2 0 = 1] 

= cos2 y – cos2 y sin2 x – sin2 x + sin2 x cos2

= cos2 y – sin2

=R.H.S.

684.

Prove the following :\(\frac {tan\, 5A- tan\,3A}{tan\, 5A+ tan\,3A} = \frac{sin\, 2A}{sin\, 8A}\)tan 5 A-tan 3A/ tan 5 + tan 3A = sin 2A/ sin 8A

Answer»

L.H.S. = cos(x + y). cos(x – y) 

= (cos x cos y – sin x sin y). (cos x cos y + sin x sin y) 

= cos2 x cos2 y – sin2 x sin2

…[∵ (a – b) (a + b) = a2 – b2

= (1 – sin2 x) cos2 y – sin2 x (1 – cos2 y) 

…[∵ sin2 e + cos2 0 = 1] 

= cos2 y – cos2 y sin2 x – sin2 x + sin2 x cos2

= cos2 y – sin2

=R.H.S

685.

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is(A) 1 (B) 3/4 (C) 1/2 (D) 1/4

Answer»

Correct answer is (C) 1/2

686.

Prove that sin6θ + cos6θ + 3sin2θ cos2θ = 1

Answer»

Solution : We know that sin2θ + cos2θ = 1

Therefore, (sin2θ + cos2θ)3 = 1

or, (sin2θ)3 + (cos2θ)3 + 3sin2θ cos2θ (sin2θ + cos2θ) = 1

or, sin6θ + cos6θ + 3sin2θ cos2θ = 1

687.

Express each of the following as the product of sine and cosine(i) sin A + sin 2A (ii) cos 2A + cos 4A (iii) sin 6θ – sin 2θ (iv) cos 2θ – cos θ

Answer»

(i) sin A + sin 2A = 2 sin(\(\frac{A+2A}{2}\)) cos(\(\frac{A-2A}{2}\)

[∵ sin C + sin D = sin(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))] 

= 2 sin\(\frac{3A}{2}\) cos\(\frac{A}{2}\) [∵ cos(-θ) = cos θ]

(ii) cos 2A + cos 4A = 2 cos(\(\frac{2A+4A}{2}\)) cos(\(\frac{2A-4A}{2}\)

[∵ cos C + cos D = 2 cos(\(\frac{C+D}{2}\)) cos(\(\frac{C-D}{2}\))] 

= 2 cos(\(\frac{6A}{2}\)) cos(\(\frac{6-2A}{2}\)

= 2 cos(3A) cos (-A) [∵ cos(-θ) = cos θ] 

= 2 cos 3A cos A

(iii) sin 6θ – sin 2θ = 2 cos(\(\frac{6\theta+2\theta}{2}\)) cos(\(\frac{6\theta-2\theta}{2}\)

[∵ sin C – sin D = 2 cos(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))] 

= 2 cos(\(\frac{8\theta}{2}\)) sin(\(\frac{4\theta}{2}\)

= 2 cos 4θ sin 2θ

(iv) cos 2θ – cos θ = -2 sin(\(\frac{2\theta+\theta}{2}\)) sin(\(\frac{2\theta-\theta}{2}\)

[∵ cos C – cos D = -2 sin(\(\frac{C+D}{2}\)) sin(\(\frac{C-D}{2}\))] 

= -2 sin(\(\frac{3\theta}{2}\)) sin(\(\frac{\theta}{2}\))

688.

If sin A + cos A = 1 then sin 2A is equal to: (a) 1 (b) 2 (c) 0 (d) \(\frac{1}{2}\)

Answer»

(c) 0

Given sin A + cos A = 1 

Squaring both sides we get 

sin2 A + cos2 A + 2 sin A cos A = 1

1 + sin 2A = 1 

sin 2A = 0

689.

The value of cos2 17° - sin2 73° is A. 1 B. \(\frac{1}{3}\) C. 0 D. -1

Answer»

cos2 17° - sin2 73° = cos2 17° - sin2(90° -17°) 

= cos217° - cos2 17° = 0

690.

The value of sec A sin(270° + A) is: (a) -1 (b) cos2 A(c) sec2 A (d) 1

Answer»

(a) -1

sec A (sin(270° + A)) = \(\frac{1}{cosA}\)(-cos A) = - 1

691.

The value of the expression cos1°. cos2°. cos3° … cos 179° =(A) -1 (B) 0 (C) 1/ √2(D) 1

Answer»

Correct option is : (B) 0

cos 1° cos 2° cos 3° … cos 179° 

= cos 1° cos 2° cos 3° … cos 90°… cos 179° 

= 0 …[∵ cos 90° = 0]

692.

The value of sin 15° cos 15° is: (a) 1(b) \(\frac{1}{2}\)(c) \(\frac{\sqrt{3}}{2}\)(d) \(\frac{1}{4}\)

Answer»

(d) \(\frac{1}{4}\)

sin 15° cos 15° = \(\frac{1}{2}\)(2 sin 15° cos 15°) 

= \(\frac{1}{2}\)(sin 30°) 

\(\frac{1}{2}\)(\(\frac{1}{2}\))

\(\frac{1}{4}\)

693.

Prove the following:cos2 x + cos2 (x + 120°) + cos2 (x – 120°) = 3/2

Answer»

cos2 x + cos2 (x + 120°) + cos2 (x – 120°) 

\(\frac{1+cos2x}{2}+\frac{1+cos2(X+120°)}{2} + \frac{1+cos 2(x-120°)}{2}\)

...[∵cos2θ = \(\frac{1+cos \,2θ}{2}\)

\(\frac{3}{2}+\frac{1}{2}\)[cos 2x + cos(2x + 240°) + cos(2x 240°)]

\(\frac{3}{2}+\frac{1}{2}\)(cos 2x + cos 2x cos 240°— sin 2x sin 240° + cos 2x cos 240° + sin 2x sin 240°)

=\(\frac{3}{2}+\frac{1}{2}\)(cos 2x + 2 cos 2x cos 240°)

=\(\frac{3}{2}+\frac{1}{2}\)[cos 2x + 2 cos 2x cos( 180° + 60°)]

\(\frac{3}{2}+\frac{1}{2}\)[cos 2x + 2cos 2x(-cos 600)]

\(\frac{3}{2}+\frac{1}{2}\)[cos 2x —2 cos 2x(\(\frac{1}{2}\))]

=\(\frac{3}{2}+\frac{1}{2}\)( cos 2x – cos 2x)

\(\frac{3}{2}+\frac{1}{2}\)(0)

\(\frac{3}{2}\)= R.H.S

694.

The value of cos1°, cos 2°... cos100° is(a) –1 (b) 0 (c) 1 (d) None of these

Answer»

(b) 0

∵ cos 90° = 0 

∴ cos 1°. cot 2°. ....... . cos 90° . cos 91° ..... . cos 100° = 0.

695.

The value of sin 28° cos 17° + cos 28° sin 17° (a) \(\frac{1}{\sqrt{2}}\)(b) 1 (c) \(\frac{-1}{\sqrt{2}}\)(d) 0

Answer»

(a) \(\frac{1}{\sqrt{2}}\)

sin 28° cos 17° + cos 28° sin 17° = sin(28° + 17°) 

This is of the form sin(A + B), A = 28°, B = 17° 

= sin 45°

\(\frac{1}{\sqrt{2}}\)

696.

The value of 4 cos3 40° – 3 cos 40° is (a) \(\frac{\sqrt{3}}{2}\)(b) \(-\frac{1}{2}\)(c) \(\frac{1}{2}\)(d) \(\frac{1}{\sqrt{2}}\)

Answer»

(b) \(-\frac{1}{2}\)

4 cos3 40° – 3 cos 40° 

= cos (3 x 40°) [∵ cos 3A = 4 cos3 A – 3 cos A] 

= cos 120° 

= cos (180° – 60°) 

= -cos 60° 

= - \(\frac{1}{2}\)

697.

If π = \(\frac{22}{7}\), then a unit radian is approximately equal to(a) 57° 16′ 22′′ (b) 57° 15′ 22′′ (c) 57° 16′ 20′′ (d) 57° 15′ 20′'

Answer»

(a) 57° 16′ 22′′

π radians = 180°

⇒ 1 radian = \(\frac{180}{π} \) degree = \(\frac{180}{22}\times7 \) degree

\(\frac{630}{11}\)degree = \(57\frac{3}{11}\) degree

= 57° + \(\frac{3}{11}\times60\) min = 57° + \(\frac{180}{11}\) min

= 57° + 16\(\frac4{11}\)

= 57°+ 16' + \(\frac4{11}\) x 60 s

= 57° + 16′ + 21.8′′ 

= 57° 16′ 22′′ (approx).

698.

The value of \(\frac{2tan30°}{1+tan^230°}\) is: (a) \(\frac{1}{2}\)(b) \(\frac{1}{\sqrt{3}}\)(c) \(\frac{\sqrt3}{2}\)(d) √3

Answer»

(d) √3

We know that sin 2A = \(\frac{2tanA}{1+tan^2A}\)

\(\frac{2tan30°}{1+tan^230°}\) = sin(2 x 30°) = sin 60° = \(\frac{\sqrt{3}}{2}\)

= tan 2A 

= tan 60° 

= √3

699.

The value of cosec-1 (\(\frac{2}{\sqrt{3}}\)) is: (a) \(\frac{\pi}{4}\)(b) \(\frac{\pi}{2}\)(c) \(\frac{\pi}{3}\)(d) \(\frac{\pi}{6}\)

Answer»

(c) \(\frac{\pi}{3}\)

Let cosec-1 (\(\frac{2}{\sqrt{3}}\)

\(\frac{2}{\sqrt{3}}\) = cosec A 

cosec A = \(\frac{2}{\sqrt{3}}\)

sin A = \(\frac{\sqrt{3}}{2}\) = sin 60° 

∴ A = 60° = \(\frac{\pi}{3}\)

700.

If sin A = \(\frac{1}{2}\) then 4 cos3 A – 3 cos A is: (a) 1 (b) 0 (c) \(\frac{\sqrt{3}}{2}\)(d) \(\frac{1}{\sqrt{2}}\)

Answer»

(b) 0

Given sin A = \(\frac{1}{2}\)

sin A = sin 30°

∴ A = 30° 

[∵ 4 cos3 A – 3 cos A = cos 3A] 

= cos(3 x 30°) 

= cos 90° 

= 0