

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
101. |
If cos 2θ = sin 4θ and 2θ is acute, then find the value of θ. |
Answer» we have cos2θ = sin 4θ ⇒ sin(90° - 2θ) = sin 4θ comparing both sides, we get 90° - 2° = 4θ ⇒ 2θ + 4θ = 90° ⇒ 6θ= 90° ⇒ θ = \(\frac{90^\circ}6\) ∴ θ = 15° Hence, the value of θ is 15° |
|
102. |
If Cosec θ – Cot θ = 1/4 then the value of Cosec θ + Cot θ isA) 1 B) -1 C) 1/4 D) 4 |
Answer» Correct option is: D) 4 Given that Cosec \(\theta\) – Cot \(\theta\) = \(\frac 14\) ...(1) \(\therefore\) ( cosec \(\theta\) - cot \(\theta\)) (cosec \(\theta\) + cot \(\theta\)) = \(\frac 14\)(cosec \(\theta\) + cot \(\theta\)) (On multiplying both sides by cosec \(\theta\) + cot \(\theta\)) = \(cosec^2\theta - cot^2\theta = \frac 14 \) (cosec \(\theta\) + cot \(\theta\)) (\(\because\) (a-b) (a+b) = \(a^2 - b^2\)) = \(\frac 14\) (cosec \(\theta\) + cot \(\theta\)) = 1 (\(\because\) \(cosec^2\theta - cot^2\theta = 1\)) = cosec \(\theta\) + cot \(\theta\) = 4 Correct option is: D) 4 |
|
103. |
If sec 5θ = cosec (θ - 36°), where 5θ is an acute angle, find the value of θ. |
Answer» sec 5θ = cosec (θ-36°) …(i) We know that sec θ = cosec (90° - θ) So, Eq. (i) become Cosec (90° - 5θ) = cosec (θ -36°) On Equating both the sides, we get 90° - 5θ = θ -36° ⇒ -5θ - θ = -36° -90° ⇒ -6θ = -126° ⇒ θ = 21° |
|
104. |
(i) (sec2 θ - 1)cot2 θ =1(ii) (sec2 θ - 1)(cosec2 θ - 1) = 1(iii) (1- cos2 θ) sec2 θ = tan2 θ |
Answer» (i) LHS = (sec2 θ − 1) cot2 θ = tan2 θ × cot2 θ (∵ sec 2θ − tan2 θ = 1) = \(\frac{1}{cot^2θ}\times{cot^2θ}\) = 1 = RHS (ii) LHS = (sec2 θ − 1)(cosec2 θ − 1) = tan2 θ × cot2 θ (∵ sec2 θ − tan2 θ = 1and cosec2 θ − cot2 θ = 1) = \(tan^2θ \times\frac{1}{tan^2θ}\) = 1 = RHS (iii) LHS = (1 − cos2 θ) sec2 θ = sin2 θ × sec2 θ (∵ sin2 θ + cos2 θ = 1) = \(sin^2θ \times\frac{1}{cos^2θ}\) = \(\frac{sin^2θ}{cos^2θ}\) = tan2θ = RHS |
|
105. |
Sin (90° – θ) = A) Sin θ B) Cos θ C) Cosec θ D) Sec θ |
Answer» Correct option is: B) Cos θ Sin (90° – \(\theta\)) = cos \(\theta\) Correct option is: B) Cos θ |
|
106. |
If sin3A = cos(A -10°) and 3A is acute then ∠A = ?(a) 35° (b) 25° (c) 20°(d) 45° |
Answer» Correct answer = (b) 25° We have [sin3A = cos(A -10°)] => cos(90° − 3A) = cos(A − 10°) [∵ sin θ = cos(90° − θ)] => 90° − 3A = A − 10° => −4A = −100 => A = 100/4 => A = 25° |
|
107. |
If sin A = cos A, then find the value of A. |
Answer» If sin A = cos A \(\frac{sin\,A}{cos\,A}=\frac{cos\,A}{cos\,A}\)= 1 ⇒ tan A = 1 = tan 45° ⇒ A = 45° (OR) sin 45° = cos 45° \(\frac{1}{\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\) So, A = 45° |
|
108. |
If sin3A = cos(A - 26°),where 3A is an acute angle, find the value of A. |
Answer» sin3A = cos(A - 26°) ⇒ cos(90° - 3A) = cos(A - 26°) [∵sin θ = cos(90° - θ)] ⇒ 90° - 3A = A - 26° ⇒ 116° = 4A ⇒ A = \(\frac{116°}4\) = 29° |
|
109. |
If sin3θ =cos(θ - 6°), where 3θ and θ - 6° are acute angles, find the value of θ. |
Answer» sin3θ = cos(θ - 6°) ⇒ cos( 90° - 3θ) = cos(θ - 6°) ⇒ 90° - 3θ = (θ - 6°) ⇒ 4θ = 96° ⇒ θ = \(\frac{96°}{4} = 24°\) |
|
110. |
Given that sinθ = a/b , then cosθ is equal to(A) b/√(b2– a2) (B) b/a (C) √(b2-a2)/b (D) a/√(b2-a2) |
Answer» (C) √(b2-a2)/b According to the question, sin θ =a/b We know, sin2 θ +cos2 θ =1 sin2 A = 1-cos2 A sin A = √(1-cos2 A So, cos θ = √(1-a2/b2 ) = √((b2-a2)/b2 ) = √(b2-a2 )/b Hence, cos θ = √(b2 – a2 )/b |
|
111. |
If `x=a^(2) cos3 theta and y=b^(2)sin3 theta`, thenA. `(x^(2))/(a)+(y^(2))/(b)=1`B. `((x^(2))/(a^(2)))^(1//3)+((y)/(b^(2)))^(1//3)=1`C. `((x^(2))/(a^(2)))^(2//3)+((y^(2))/(b^(2)))^(2//3)=1`D. `((x)/(a^(2)))^(2//3)+((y)/(b^(2)))^(2//3)=1` |
Answer» Correct Answer - D Given, `x=a^(2)cos^(3) theta and y=b^(2)sin^(3) theta`. `implies(x)/(a^(2))=cos^(3)theta and (y)/(b^(2))=sin^(3)theta` `implies ((x)/(a^(2)))^(2//3)=cos^(2)theta,((y)/(b^(2)))^(2//3)=sin^(2)theta`. `sin^(2)theta+cos^(2)theta=((x)/(a^(2)))^(2//3)+((y)/(b^(2)))^(2//3)` `:. ((x)/(a^(2)))^(2//3)+((y)/(b^(2)))^(2//3)=1` |
|
112. |
Prove that tan2 A – sin2 A = tan2 A . sin2 A. |
Answer» tan2 A – sin2 A = \(\frac{sin^2\,A}{cos^2\,A}\) – sin2 A sin2 A ( \(\frac{1}{cos^2\,A}\) – 1 ) = sin2 A (sec2 A – 1) = sin2 A. tan2 A |
|
113. |
If A + B + C = 180°. Prove that cot B. cot C + cot C · cot A + cot A · cot B = 1 |
Answer» Given A + B + C = 180°; A + B = 180° – C; cot(A + B) = cot (180° – C) \(\frac{cot(A).cot(B) - 1}{cotA + cotB} = - cotC\) cotA . cotB – 1 = -cotA · cotC – cot B . cotC. ∴ cotA . cotB + cotB cotC + cotC . cotA = 1. |
|
114. |
Which of the following statements is true? (A) sin θ = cos (90 – θ)(B) cos θ = tan (90 – θ)(C) sin θ = tan (90 – θ) (D) tan θ = tan (90 – θ) |
Answer» Correct option is (A) sin θ = cos (90 – θ) |
|
115. |
Which of the following is the value of sin 90°? (A) √3/2(B) 0 (C)1/2 (D) 1 |
Answer» Correct option is (D) 1 |
|
116. |
Find the value off the following:cos (60° + θ) – sin (30° - θ) |
Answer» cos (60° + θ) – sin (30° - θ) = sin {90°-(60°+θ)} – sin (30° - θ) [∵ cos θ = sin (90° - θ)] = sin ( 90° - 60°-θ) – sin (30° - θ) = sin (30° - θ) - sin (30° - θ) = 0 |
|
117. |
2 tan 45° + cos 45° – sin 45° = ? (A) 0 (B) 1 (C) 2 (D) 3 |
Answer» 2 tan 45° + cos 45° – sin = 2(1) + 1/√2 - 1/√2 = 2 Correct option is (C) 2 |
|
118. |
Find the value off the following:cosec (65° + θ) – sec (25° - θ) |
Answer» cosec (65° + θ) – sec (25° - θ) = sec {90°-(65°+θ)} – sec (25° - θ) [∵ cosec θ = sec (90° - θ)] = sec ( 90° - 65°-θ) – sec (25° - θ) = sec (25° - θ) - sec (25° - θ) = 0 |
|
119. |
\(\frac{cos28° }{sin62° }\) = ?cos28°/sin62° = ? (A) 2 (B) -1 (C) 0(D) 1 |
Answer» Correct option is (D) 1 \(\frac{cos \,28° }{sin\,62° }\) = \(\frac{sin(90° - 28° )}{sin62° }\) = \(\frac{sin62° }{sin62° }\) = 1 |
|
120. |
Prove that (sinA – cos A)2 = 1 – sin2A |
Answer» L.H.S (sinA – cosA)2 = sin2A + cos2A – 2sinA cosA = 1 – sin2A = R.H.S. |
|
121. |
If 0 < x < 45° and 45° < y < 90°, then which one of the following is correct?(a) sin x = sin y (b) sin x < sin y (c) sin x > sin y (d) sin x ≤ sin y |
Answer» (b) sin x < sin y Since sin θ in cosec from θ = 0° to θ = 90°, i.e., where 0° < θ < 90° then 0 < sin θ < 1. ∴ sin x < sin y. |
|
122. |
If q cosec θ = p and θ is acute, then what is the value of \(\sqrt{p^2-q^2}\) tan θ ?(a) p (b) q (c) pq (d) \(\sqrt{p^2+q^2}\) |
Answer» (b) q q cosec θ = p ∴ \(\sqrt{p^2-q^2}\) tan θ = \(\sqrt{q^2\,cosec^2\theta-q^2}.tan\,\theta\) = \(\sqrt{q^2\,(cosec^2\theta-1)}.tan\,\theta\) = \(\sqrt{q^2\,cot^2\,\theta}.tan\,\theta\) = q cot θ . tan θ = q. |
|
123. |
Prove that cos2 75° + cos2 15° = 1 |
Answer» cos2 75° + cos2 15° = 1 LHS = cos2 75° + cos2 15° = cos2 75° + cos2 (90 – 75)° = cos2 75° + sin2 75° = 1= RHS |
|
124. |
Prove that cosec 80° − sec 10° = 0. |
Answer» LHS = cosec80° – sec10° = cosec(90° – 10°) – sec(10°) = sec10° – sec10° = 0 = RHS |
|
125. |
If cot A = 5/12, then sin A + cos A is ………A) 17/13B) 12/13C) 5/13D) 20/13 |
Answer» Correct option is: A) \(\frac{17}{13}\) We have cot A = \(\frac 5{12}\) \(\therefore\) \(1 + cot^2A = 1 + (\frac 5 {12})^2 = 1 + \frac {25}{144} \) = \(\frac {144+25}{144} = \frac {169}{144} = (\frac {13}{12})^2\) = \(cosec^2A = (\frac {13}{12})^2\) (\(\because\) \(1 + cot^2A = cosec^2A\)) = cosec A = \(\frac {13}{12}\) \(\therefore\) Sin A = \(\frac {1}{cosec \,A} = \frac 1{\frac {13}{12}} = \frac {12}{13}\) \(\therefore\) cot A = \(\frac {cos\, A}{sin \, A} = \frac 5{12}\) = cos A = \(\frac 5{12}\) sin A = \(\frac 5{12}\) \(\times\) \(\frac {12}{13}\) = \(\frac 5{13}\) \(\therefore\) Sin A + cos A = \(\frac {12}{13}\) + \(\frac 5{13}\) = \(\frac {17}{13}\) Correct option is: A) \(\frac{17}{13}\) |
|
126. |
If cos A = 12/13, then sin A =A) 5/13B) 5/12C) 12/13D) 13/5 |
Answer» Correct option is: A) \(\frac{5}{13}\) We have cos A = \(\frac {12}{13}\) \(\therefore\) Sin A = \(\sqrt {1-cos^2A} = \sqrt {1- (\frac {12}{13})^2} \) \(= \sqrt {1- \frac {144}{169}} = \sqrt {\frac {25}{169}} = \frac 5{13}\) Correct option is: A) \(\frac{5}{13}\) |
|
127. |
Find the value off the following:sec70°. sin20° - cos20°. cosec70° |
Answer» sec 70° sin 20° - cos 20° cosec 70° = cosec (90°-70°) cos (90° - 20°)- cos 20° cosec 70° [∵ sec θ = cosec (90° - θ) and Sin θ = cos (90° - θ)] = cosec 70° cos 20° - cos 20° cosec 70° = 0 |
|
128. |
Write ‘True’ or ‘False’ and justify your answer.If cosA + cos2A = 1, then sin2A + sin4A = 1. |
Answer» True Justification: According to the question, cos A+cos2 A = 1 i.e., cos A = 1- cos2 A Since, sin2 θ+cos2 θ = 1 sin2 θ = 1- cos2 θ) We get, cos A = sin2 A …(1) Squaring L.H.S and R.H.S, cos2 A = sin4 A …(2) To find sin2A+sin4 A=1 Adding equations (1) and (2), We get sin2A + sin4 A= cos A + cos2 A Therefore, sin2A + sin4 A = 1 |
|
129. |
Prove that : sin 54° + cos67° = sin23° + cos36° |
Answer» Taking LHS = sin54o + cos67o We know that cos θ = sin (90° - θ) Here, θ = 67° ⇒ sin 54°+ sin (90° - 67°) ⇒ sin 54°+ sin 23° We also know that Sin θ = cos (90° - θ) Here, θ = 54° ⇒ cos (90° - 54°) + sin 23° ⇒ cos 36°+ sin 23° = RHS Hence Proved |
|
130. |
If cos55° = x2, then write the value of sin 55° in terms of x. |
Answer» We know that cos2 θ + sin2 θ = 1 ⇒ cos2 55° + sin2 55° = 1 ⇒ sin2 55° = 1 – cos2 55° ⇒ sin 55° = √(1 – cos2 55°) And Given that cos 55° = x2 ⇒ sin 55° = √{1– (x2)2} ⇒ sin 55° = √(1 – x4) |
|
131. |
If α + β = \(\frac{π}{2}\) and β + γ = α, then show that tan α = tan β = 2tan γ. |
Answer» α + β = \(\frac{π}{2}\) ⇒ α = \(\frac{π}{2}\) - β ⇒ tan α = tan \(\bigg(\frac{π}{2}- β\bigg)\) ⇒ tan α = cot β ⇒ tan α tan β = 1. …(i) Now, β + γ = α ⇒ γ = α - β ⇒ tan γ = tan (α - β) ⇒ tan γ = \(\frac{tan\,α - tan\,β}{1+tan\,α\,tan\,β}\) ⇒ tan γ = \(\frac{tan\,α-tan\,β}{1+1}\) = \(\frac{tan\,α-tan\,β}{2}\) (∵ tan α tan β = 1) ⇒ 2 tan γ = tan α - tan β ⇒ tan α = tan β + 2 tan γ . |
|
132. |
If ∠A and ∠P are acute angle such that tan A = tan p, then show that ∠A = ∠P. |
Answer» In a right angled triangle APQ, tan A = \(\frac{PQ}{AQ}\) and tan P = \(\frac{AQ}{PQ}\) ∵ tan A = tan P \(\frac{PQ}{AQ} = \frac{AQ}{PQ}\) ∵ PQ = AQ ∠P = ∠A = 45° |
|
133. |
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ |
Answer» 3cosθ - 4sinθ = 2cosθ + sinθ 3cosθ - 2cosθ = 4sinθ + sinθ cosθ = 5sinθ tanθ = \(\frac{1}{5}\) |
|
134. |
In a ΔABC, right angled at A, if tan C = √3, find the value of sin B cos C + cos B sin C. |
Answer» In a ΔABC, right angled at A, tan C = √3 i.e ∠C = 60° and ∠B = 90 - 60 = 30° Sin C = Sin 60° = √3/2 Cos C = Cos 60° = 1/2 Sin B = Sin 30° = 1/2 Cos B = Cos 30° = √3/2 According to the question, sin B cos C + cos B sin C = (1/2) (1/2) + (√3/2) (√3/2) = 1/4 + 3/4 = 1 |
|
135. |
Sin θ = 20/29 then Sin2 θ + cos2 θ =A) 144/841B) 41/841C) 1D) 0 |
Answer» Correct option is: C) 1 \(Sin^2 \theta + cos^2 \theta\) = 1 for any value of \(\theta\). So, hence if sin \(\theta\) = \(\frac {20}{29}\) then \(Sin^2 \theta + cos^2 \theta\) = 1 Alternative : We have sin \(\theta\) =\(\frac {20}{29}\) \(\therefore\) \(cos^2\, \theta = 1- sin^2 \theta = 1 - (\frac {20}{29})^2 = 1- \frac {400}{841}\) = \(\frac {841-400}{841} = \frac {441}{841}\) Now, \(Sin^2 \theta + cos^2 \theta\) = \((\frac {20}{29})^2+ \frac {441}{841} = \frac {400}{841} + \frac {441}{841} = \frac {841}{841} = 1\) Correct option is: C) 1 |
|
136. |
(1 + Tan2 45°)2 =A) 1 B) 7 C) 4 D) 9 |
Answer» Correct option is: C) 4 \(\because\) tan \(45^\circ\) = 1 \(\therefore\) \((1+ tan^2 45^\circ)^2 = (1+1^2)^2 = (1+1)^2 = 2^2 = 4\) Correct option is: C) 4 |
|
137. |
In ΔABC if Sin A = 9/15 then Cosec2 A – Cot2 A =A) 1 B) -1 C) 2 D) 3 |
Answer» Correct option is: A) 1 \(cosec^2 A - cot^2A = 1 \) for any value of A except those values where sin A = 0 Here, sin A = \(\frac 9{15} \neq 0\) \(\therefore\) \(cosec^2 A - cot^2A = 1 \) Correct option is: A) 1 |
|
138. |
If √3 cos θ – sin θ = 1, then θ is(a) π (b) π/2 (c) π/3 (d) π/6 |
Answer» Answer : (d) π/6 √3 cos θ – sin θ = 1 Dividing throughout by \(\sqrt{(\sqrt{3})^2+(-1)^2}\) = 2 We have \(\frac{\sqrt{3}}{2}\) cos θ - \(\frac{1}{2}\) sin θ = \(\frac{1}{2}\) ⇒ sin π/3 cos θ – cos π/3 sin θ = \(\frac{1}{2}\) ⇒ sin (π/3 - θ) = sin π/6 ⇒ π/3 - θ = π/6 ⇒ θ = π/6. |
|
139. |
The number of solutions of the equation sin x cos 3x = sin 3x cos 5x in [ 0, π/2 ] is(a) 3 (b) 4 (c) 5 (d) 6 |
Answer» Answer : (c) 5 sin x cos 3x = sin 3x cos 5x ⇒ 2 sin x cos 3x – 2 sin 3x cos 5x = 0 ⇒ [sin (3x + x) – sin (3x – x)] – [sin (3x + 5x) – sin (5x – 3x)] = 0 ⇒ sin 4x – sin 2x – sin 8x + sin 2x = 0 ⇒ sin 4x – sin 8x = 0 ⇒ 2 cos \(\big( \frac{4x+8x}{2}\big)\) sin \(\big( \frac{8x-4x}{2}\big)\) = 0 ⇒ 2 cos 6x sin 2x = 0 ⇒ cos 6x = 0 or sin 2x = 0 ⇒ 6x = (2n + 1) π/2 or 2x = nπ ⇒ x = (2n + 1) π/2 or x = \(\frac{n\pi}{2}\) ⇒ x = 0, \(\frac{\pi}{2}\), \(\frac{\pi}{12}\), \(\frac{3\pi}{12}\),\(\frac{5\pi}{12}\) in [0. \(\frac{\pi}{2}\)] = 5 |
|
140. |
The number of real roots of the equation sin4 θ – 2 sin2 θ – 1 = 0 in the interval (0, 2π) is (a) 0 (b) 1 (c) 2 (d) 4 |
Answer» Answer : (a) 0 sin4 θ – 2 sin2 θ – 1 = 0 ⇒ (sin2 θ)2 – 2 sin2 θ – 1 = 0 ⇒ sin2 θ = \( {2 \,\pm \sqrt{4-4\times 1 \times (-1)} \over 2\times 1}\) \( = {2\, \pm\, \sqrt{8} \over 2}\) = \( {2\, \pm \,2\sqrt{2} \over 2}\) = 1- \( \sqrt{2} \) or 1 + \( \sqrt{2} \) sin2 θ = 1 – \( \sqrt{2} \) is inadmissible as it is not real. ∵ –1 ≤ sin θ ≤ 1 ⇒ 0 ≤ sin2 θ ≤ 1 ⇒ sin2 θ = 1 + \( \sqrt{2} \) is not possible. Hence the given equation has no real root. |
|
141. |
The solution set of sin \(\big(\) x + \(\frac{π}{4}\) \(\big)\) = sin 2x equals (a) \(\frac{n\pi+ \pi/4}{1-(-1)^n \,2}\)(b) \(\frac{n\pi- \pi/4}{1-(-1)^n \,2}\) (c) \(\frac{n\pi+ \pi/4}{1+ (-1)^n \,2}\) (d) \(\frac{n\pi- \pi/4}{1+ (-1)^n \,2}\) |
Answer» Answer : (b) \(\frac{n\pi- \pi/4}{1-(-1)^n \,2}\) sin (x + π/4) = sin 2x ⇒ x + π/4 = nπ + (–1)n 2x, n ∈ I ⇒ x – (–1)n 2x = nπ – π/4, n ∈ I ⇒ x {1 – (–1)n .2} = nπ – π/4 ⇒ x = \(\frac{n\pi- \pi/4}{1-(-1)^n \,2}\) , n ∈ I. |
|
142. |
The most general solution of tan θ = –1 and cos θ = \(\frac{1}{\sqrt{2}}\) is (a) nπ + (–1)n \(\frac{π}{4}\) (b) 2nπ + \(\frac{3π}{4}\)(c) nπ + (–1)n \(\frac{5π}{4}\) (d) 2nπ + \(\frac{7π}{4}\) |
Answer» Answer : (d) 2nπ + \(\frac{7π}{4}\) tan θ = –1 ⇒ tan θ = – tan π/4 = tan (π – π/4) = tan (2π - π/4) ⇒ tan θ = tan \(\frac{3π}{4}\) or tan \(\frac{7π}{4}\) ⇒ θ = \(\frac{3π}{4}\) , \(\frac{7π}{4}\) ...(i) cos θ = \(\frac{1}{\sqrt{2}}\) ⇒ cos θ = cos \(\frac{π}{4}\) = cos (2π – π/4) ⇒ cos θ = cos \(\frac{π}{4}\) = cos \(\frac{7π}{4}\) ⇒ θ = \(\frac{π}{4}\) , \(\frac{7π}{4}\)...(ii) ∴ From (i) and (ii) θ = \(\frac{7π}{4}\) is the only value of θ in [0, 2π] which satisfies both the equations. ∴ The general value of θ satisfying both the equations is θ = 2nπ + \(\frac{7π}{4}\) |
|
143. |
Write ‘True’ or ‘False’ and justify your answer.The value of 2 sin θ can be a + 1/a, where a is a positive number and a ≠ 1. |
Answer» False Given: ‘a’ is a positive number and a≠1 ⇒ AM > GM (Arithmetic Mean (AM) of a list of non- negative real numbers is greater than or equal to the Geometric mean (GM) of the same list) If a and b be such numbers, then AM = (a + b)/2 and GM = √ab By assuming that a + 1/2 = 2 sin θ statement is be true. Similarly, AM and GM of a and 1/a are (a+1/a)/2 and √(a.1/a) respectively. By property, (a+1/a)/2 > √(a.1/a) a + 1/a > 2 ⇒ 2 sin θ > 2 (By our assumption) ⇒ sin θ > 1 But -1 ≤ sin θ ≤ 1 ∴ Our assumption is wrong and that 2 sin θ cannot be equal to a + 1/a |
|
144. |
Evaluate each of the following:(cosec2 45° sec2 30°) (sin2 30° + 4 cot2 45°- sec2 60°) |
Answer» (cosec2 45° sec2 30°) (sin2 30° + 4 cot2 45°- sec2 60°) = \((2\times\frac{2}3)\)\((\frac{1}4+4\times1-4)\) = \(\frac{4}3\)\((\frac{1}4+4\times1-4)\) = \(\frac{1}3\) |
|
145. |
Evaluate each of the following: 4(sin4 30° + cos2 60°) - 3(cos2 45° - sin2 90°) - sin2 60° |
Answer» 4(sin4 30° + cos2 60°) - 3(cos2 45° - sin2 90°) - sin2 60° \(4(\frac{1}{16} + \frac{1}{4}) - 3(\frac{1}{2} - 1) - \frac{3}{4}\) = \(\frac{20}{16} + \frac{3}{2} - \frac{3}{4}\) = 2 |
|
146. |
Evaluate each of the following:cot2 30° - 2 cos2 60° - \(\frac{3}4\)sec2 45° - 4 sec2 30° |
Answer» cot2 30° - 2 cos2 60° - \(\frac{3}4\)sec2 45° - 4 sec2 30° = \((\sqrt3)^2\) - 2\((\frac{1}2)^2\) - \(\frac{3}4\) x \((\sqrt2)^2\) - 4\((\frac{2}{\sqrt3})^2\) = 3 - \(\frac{1}2\) - \(\frac{3}2\) - \(\frac{16}3\) = - \(\frac{13}3\) |
|
147. |
Evaluate each of the following:\(\frac{4}{cot^2 30°} + \frac{1}{sin^2 60°} - cos^2 45°\) |
Answer» \(\frac{4}{cot^2 30°} + \frac{1}{sin^2 60°} - cos^2 45°\) = \(\frac{4}{(\sqrt{3})^2}\)+\(\frac{1}{(\frac{\sqrt{3}}{2})^2}\)-\((\frac{1}{\sqrt{2}})^2\) = \(\frac{4}{3} + \frac{4}{3} - \frac{1}{2} = \frac{13}{6}\) |
|
148. |
If `cos theta=(sqrt(3))/2` then find the value of `(1-sec theta)/(1+cosec theta)` |
Answer» Correct Answer - `(sqrt(3)-2)/(3sqrt(2))` |
|
149. |
If cos A = a/b, then sin2 A = ____. |
Answer» sin2 A + cos2 A = 1 sin2 A = 1 - cos2 A = 1- (a/b)2 =1 - a2/b2 = (b2 - a2)/b2 |
|
150. |
Write ‘True’ or ‘False’ and justify your answer.The value of sinθ + cosθ is always greater than 1. |
Answer» False. The value of (sinθ + cosθ) for θ = 0° is 1. |
|