Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If c is a unit vector perpendicular to the vectors a and b, write another unit vector perpendicular to a and b.

Answer»

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors. And keeping in mind that is a Unit vector we get the equation –

\(\cfrac{\vec a\times\vec b}{|\vec a\times\vec b|}=\vec c\)→(Vector divided its magnitude gives unit vector)

\(\cfrac{\vec a\times\vec b}{|\vec a\times\vec b|}=-\vec c\) \(\therefore-\vec c\) is perpendicular to \(\vec a\) and  \(\vec b\).

Alternative Solution – Since \(\vec c\) is perpendicular to \(\vec a\) and  \(\vec b\), any unit vector parallel/anti-parallel to  \(\vec c\) will be perpendicular to \(\vec a\) and  \(\vec b\).

2.

If the vectors i - 2xj + 2yk and i + 2xj - 3yk are perpendicular, then the locus of (x , y) is A. a circleB. an ellipseC. a hyperbolaD. none of these

Answer»

Correct option is B. an ellipse

Let  \(\vec a=\hat i-2x\hat j+2y\hat k\) and  \(\vec b=\hat i+2xj-3y\hat k\)

Given that  \(\vec a\) and  \(\vec b\) are perpendicular.

So,  \(\vec a-\vec b\) = 0

⇒ 1 - 4x2 - 6y2 = 0

⇒ 4x2+ 6y=1

Here, vectors are in 3-Dimensions

∴  above equation represents an ellipse .i.e. locus of (x, y) is an ellipse.

3.

If a and b are two vectors such that vector a.b = 6, |a| = 3 and |b| = 4 Write the projection of on

Answer»

 \(\vec a.\vec b=|a||b|cos\theta=6\)

Given,

|a|=3, |b|=4

6 = 3 x 4 cos θ

6 = 12 cos θ

cos θ = \(\cfrac12\)

4.

What vector a and b is the angle between vectors and with magnitudes 2 and √3 respectively? Given vector a.b = √3.

Answer»

We know,

\(\vec a.\vec b=|a||b|cos\theta\) where θ is the angle between \(\vec a\) and  \(\vec b\).

Given, |a |= 2 |b| = √3

\(\vec a.\vec b=2.\sqrt3cos\theta\)

So, cos θ = \(\cfrac12\)

θ = 60°

5.

If vectors a, b represent the diagonals of a rhombus, thenA. \(\vec a\times\vec b=\vec 0\)B. \(\vec a.\vec b=0\)C. \(\vec a.\vec b=1\)D. \(\vec a\times\vec b=\vec a\)

Answer»

Correct option is B. \(\vec a.\vec b=0\) 

The diagonals of a rhombus are always perpendicular

It means  \(\vec a\) is perpendicular to \(\vec b\)

Q = 90°

Cos Q = 0

\(\vec a.\vec b=0\)

6.

Find the projection of vector (8i + j) in the direction of vector (i + 2j - 2k).

Answer»

Let,

 \(\vec{a} =( \vec{8i} + \vec{j})\)

\(\vec{b} = (\vec{i} + \vec{2j} - \vec{2k})\)

\(\vec{b}\) = \(\sqrt{1^2 + 2^2+ 2^2}\) = \(\sqrt{1+ 4+ 4}\) = \(\sqrt {9}\) = 3

 \(\vec{b}\) = \(\frac{\vec{b}}{\vec{|b|}}\) = \(\frac{\vec{i}+\vec{2j}-\vec{2k}}{3}\) 

∴ The projection of \((\vec{8i}+\vec{j})\) on \((\vec{i}+{2j}-\vec{2k})\) is   \((\vec{8i}+\vec{j})\)   \(\frac{\vec{i}+\vec{2j}-\vec{2k}}{3}\) 

\(\frac{8+2+0}{3}\) = \(\frac{10}{3}\)

7.

Prove that vectors (a + b).(a - b) = |a|2 + |b|2 ⇔ a⊥b, where vectors a ≠ 0 and  vectors b ≠ 0.

Answer»

\((\vec{a}+\vec{b}).(\vec{a}-\vec{b})\) = \(|\vec{a}|^2+|\vec{b}|^2\) 

⇒  \(|\vec{a}|^2-|\vec{b}|^2\) =   \(|\vec{a}|^2+|\vec{b}|^2\)

⇒    \(|\vec{b}|\) = 0

Which is not possible hence

\((\vec{a})⊥(\vec{b})\)

8.

Write the number of vectors of unit length perpendicular to both the vectors a = 2i + j + 2k and b = j + k.

Answer»

As we know, for vectors  \(\vec a\) and  \(\vec b\) unit vectors perpendicular to them is give by \(\pm\cfrac{\vec a\times\vec b}{|\vec a\times\vec b|}\) 

Unit vector can be ⊥ either in positive or negative direction.

Hence, the number of vectors of unit length perpendicular to both the vectors  \(\vec a=2\hat i+\hat j+2\hat k\) and  \(\vec b = \hat j+\hat k\)  is 2.

9.

Write the angle between the vectors a x b and b x a.

Answer»

Given question gives us two same vectors so the angle 0°.

 is In case, it asks write the angle between the vectors \(\vec a\times\vec b\) and \(\vec b\times \vec a-\)

The angle between the vectors will be 180 ° as they are equal in magnitude and opposite in direction.

10.

If a,  b,  c are three unit vectors such that a x b = c, b x c = a, c x a = b. show that a, b, c, form an orthonormal right handed traid of unit vectors.

Answer»

Given  \(\vec a\times\vec b=\vec c,\)  \(\vec b\times\vec c=\vec a\) and  \(\vec c\times\vec a=\vec d\).

Considering the first equation, \(\vec c\) is the cross product of the vectors \(\vec a\) and  \(\vec b\).

By the definition of the cross product of two vectors, we have  \(\vec c\) perpendicular to both \(\vec a\) and  \(\vec b.\).

Similarly, considering the second equation, we have  \(\vec a\) perpendicular to both \(\vec b\) and  \(\vec c\).

Once again, considering the third equation, we have  \(\vec b\) perpendicular to both \(\vec c\) and  \(\vec a\).

From the above three statements, we can observe that the vectors \(\vec a,\,\vec b\) and \(\vec c\) are mutually perpendicular.

It is also said that  \(\vec a,\,\vec b\) and  \(\vec c\) are three unit vectors.

Thus, \(\vec a,\,\vec b,\,\vec c\) form an orthonormal right handed triad of unit vectors.

11.

Write the projections of vector r = 3i - 4j + 12 k on the coordinate axes.

Answer»

x - axis = \(\hat i\)

y - axis = \(\hat j\)

z - axis = \(\hat k\)

Proj \(\vec b\)\(\vec a\) =  \(\cfrac{\vec a.\vec b}{|\vec b|^2}\vec b\)

Projection along x - axis = \(\cfrac31\hat i\)

= 3 \(\hat i\)

Projection along y - axis = \(\cfrac{-4}1\hat j\)

= -4 \(\hat j\)

Projection along z - axis  = \(\cfrac{12}1\hat k\)

 = 12 \(\hat k\)

12.

For any two vectors a and b, find a.(b x a).

Answer»

\(\vec a.(\vec b\times \vec a)=0\)

We know,

\((\vec b\times \vec a)\) is perpendicular to both  \(\vec a\) and  \(\vec b\).

So, \(\vec a.(\vec b\times \vec a)=0\)

[\(\because\vec a\) and \((\vec b\times\vec a)\) are perpendicular to each other]

13.

For any two vectors a and b, find (a x b).b.

Answer»

\((\vec a\times\vec b).\vec b=0\)

We know, \((\vec a\times\vec b)\) is perpendicular to both  \(\vec a\) and  \(\vec b\).

So, \((\vec a\times\vec b).\vec b=0\)

[\(\because\vec b\) and \((\vec a\times\vec b)\) are perpendicular to each other]

14.

Write the projection of vector (i+j+k) along the vector j.

Answer»

Let,

\(\vec{a}= (\vec{i}+\vec{j}+\vec{k})\)

\(\vec{b}=(\vec{j})\)

\(\vec{|b|}\) = \(\sqrt{0^2+1^2+0^2}\) = \(\sqrt{1}\) = 1

 \(\vec{b}=\frac{\vec{b}}{|\vec{b}|}\) = \(\frac{\vec{j}}{1}\)

∴ The projection of \((\vec{i}+\vec{j}+\vec{k})\) on \((\vec{j})\) is   \((\vec{i}+\vec{j}+\vec{k})\).\((\vec{j})\) = 1

15.

If  \(\vec a.\vec a=0\)  and  \(\vec a.\vec b=0\),  what can you conclude about the vector  \(\vec b\) ?

Answer»

it is given that  \(\vec a.\vec a=0\) and  \(\vec a.\vec b=0\)

From this, we can say that  \(|\vec a|^2=0\)

So,  \(\vec a\)  is a zero vector \(\vec a.\vec b=0\) we can say that  \(\vec b\) can be any vector perpendicular to zero vector  \(\vec a.\) 

16.

Find the volume of the parallelepiped with its edges represented by the vectors i + j, i + 2j and i + j + πk.

Answer»

Volume of the parallelepiped with its edges represented by the vectors

\(\vec a,\vec b,\vec c\) is \([\vec a\,\vec b\,\vec c]\) = \(\vec a.(\vec b\times\vec c)\) = \(\begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & \pi \end{vmatrix}\) = π

17.

Find the values of ‘a’ for which the vectors α = i + 2j + k, β = ai + j + 2k and γ = i + 2j + ak are coplanar.

Answer»

Three vectors are coplanar if (if and only if)  \(\vec a.(\vec b\times\vec c)=0\)

Hence we have value of the matrix \(\begin{vmatrix}1 & 2 & 1 \\a & 1 & 2 \\1 & 2 & a\end{vmatrix}\) = 0

We have 2a- 3a + 1 = 0

2a- 2a - a + 1 = 0

Solving this quadratic equation we get

a = 1, a = \(\cfrac12\)