 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | The volume of the parallelepiped whose coterminous edges are represented by the vectors `2vecb xx vecc, 3vecc xx veca` and `4veca xx vecb` where `veca=(1+sintheta)hati+costhetahatj+sin2thetahatk` , `vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk`, `vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk` is 18 cubic units, then the values of `theta`, in the interval `(0,pi/2)`, is/areA. `pi/9`B. `(2pi)/(9)`C. `pi/3`D. `(4pi)/9` | 
| Answer» Correct Answer - A::B::D Volume `=|[2vecb xx vecc 3 vecb]|=18` `rArr 24[vecavecbvecc]^(2)=18` `rArr [|vecavecbvecc|]=sqrt(3)/2` Now, `[vecavecbvecc]= |{:(1+sintheta,costheta,sin2theta),(sintheta+(2pi)/(3),costheta+(2pi)/(3),sin2theta+(4pi)/(3)),(sintheta-(2pi)/(3), costheta-(2pi)/(3), sin2theta-(4pi)/(3)):}|` Applying `R_(1) to R_(1) + R_(2)+R_(3)` and expanding `|[vecavecbvecc]|=sqrt(3)|cos3theta|=sqrt(3)/2` `rArr cos3theta=+-1/2 rArr 3theta=pi/3,(2pi)/(3), (4pi)/(3)` `rArr theta=pi/9, (2pi)/9, (4pi)/9` | |
| 2. | Let `(hatp xx vecq) xx (hatp.vecq)vecq` `=(x^(2)+y^(2))vecq + (14-4x-6y)vecp` Where `hatp` and `hatq` are two non-collinear vectors `vecp` is unit vector and x,y are scalars. Then the value of `(x+y)` isA. 4B. 5C. 6D. 7 | 
| Answer» Correct Answer - B `(vecp xx vecq) xx hatp+(hatp.vecc)vecq=(x^(2)+y^(2))vecq+(14-4x-6y)hatp` `rArr (hatp.hatp)vecq+(1-4x-6y)hatp` Since `hatp` and `vecq` are non-zero non-collinear. We can compare coefficients of vectors `hatp` and `hatq`. `therefore 1+hatp.vecq=x^(2)+y^(2)`.............(i) And `hatp.vecq=4x+6y-14`............(ii) From (i) and (ii), we get `rArr x^(2) + y^(2)-4x-6y+13=0` `rArr (x-2)^(2)+(y-3)^(2)=0` x=2 and y=3 | |
| 3. | If `veca, vecb, vecc` are non coplanar vectors and `vecp, vecq, vecr` are reciprocal vectors, then `(lveca+mvecb+nvecc).(lvecp+mvecq+nvecr)` is equal toA. `l^(2)+m^(2)+n^(2)`B. lm+mn+nlC. 0D. None of these | 
| Answer» Correct Answer - A The vectors reciprocal to `veca,vecb,vecc`, are given by `vecp=(vecb xx vecc)/[vecavecbvecc], vecq= (vecc xx veca)/[vecavecbvecc], vecr = (veca xx vecb)/([vecavecbvecc])`such that `veca.vecp=1, veca.vecq=veca.vecr=0`, `vecb.vecq=1, vecb.vecp=vecb.vecr=0` `vecc.vecr=1, vecc. vecp=vecc.vecq=0` This gives `(lveca+mvecb+nvecc).(lvecp+mvecq+nvecr)` `=l^(2)+m^(2)+n^(2)`. | |
| 4. | If `veca, vecb, vecc` are three non-zero vectors, then which of the following statement(s) is/are true?A. `veca xx (vecb xx vecc), vecb xx (vecc xx veca), (vecc xx veca), vecc xx (veca xx vecb)` form a right handed systemB. `vecc, (veca xx vecb) xx vecc, veca xx vecb` from a right handed systemC. `veca.vecb+vecb.vecc+vecc.veca lt 0` if `veca+vecb+vecc=vec0`D. `((veca xx vecb).(vecb xx vecc))/((vecb xx vec).(veca xx vecc))=-1` if `veca + vecb + vecc=0` | 
| Answer» Correct Answer - B::C::D a) `veca xx (vecb xx vecc) + vecb xx (vecc xx veca) + vecc xx (veca xx vecb)=vec0` `rArr` Vectors are coplanar, so do not form RHS. b) `(veca xx vecb) xx vecc, veca, veca xx vecb, vecc` in that order from RHS. `rArr vecc, (veca xx vecb) xx vecc, veca xx vecb` also form RHS as they are in same cycle order. c) `veca + vecb+vecc=0 rArr (veca +vecb+vecc)=0` `rArr veca^(-2)+vecb^(-2)=-2a(veca.vecb+vecb.vecc+vecc.veca)` Hence, `veca.vecb+vecb.vecc+vecc.veca lt 0` d) `veca+vecb+vecc=0 rArr veca xx vecb=vecb xx vecc = vecc xx veca` Using this we get result. | |
| 5. | Vectors `veca, vecb, vecc` are three unit vectors and `vecc` is equally inclined to both `veca` and `vecb`. Let `veca xx (vecb xx vecc) + vecb xx (vecc xx veca)` `=(4+x^(2))vecb-(4xcos^(2)theta)veca`, then `veca` and `vecb` are non-collinear vectors, `x gt 0`A. `x=2`B. `theta=0^(@)`C. `theta=x`D. `x=4` | 
| Answer» Correct Answer - A::B::C `|veca|=|vecb|=|vecc|=1` and `veca.vecc=vecb.vecc`………….(i) `veca xx (vecb xx vecc) +vecb xx (vecc xx veca)` `=(vecc. vecc)vecb-(veca.vecb)vecc+(veca.vecb)vecc-(vecb.vecc)veca` `=(veca.vecc)vecb-(vecb.vecc)veca` `rArr veca.vecc+x^(2)` and `vecb.vecc=4xcos^(2)theta`. ........(ii) From (i) and (ii), `4+x^(2)=4xcos^(2)theta` `rArr 4+x^(2)=4x-4sin^(2)theta` `rArr (x-2)^(2)=-4xsin^(2)theta` `rArr x=2` or `sintheta=0`. | |
| 6. | `veca=2veci+vecj+veck`, `vecb=b_(1)hati+b_(2)hatj+b_(3)hatk`, `veca xx vecb=5hati+2hatj-12hatk, veca.vecb=11`, then `b_(1)+b_(2)+b_(3)=`A. 3B. 5C. 7D. 9 | 
| Answer» Correct Answer - B `vecb= ((vecaxxvecb)xx veca+(veca.vecb)veca)/(|veca|^(2))` `=6hati-3hatj+2hatk` `rArr vecb_(1)+vecb_(2)+vecb_(3)=6-3+2=5` | |
| 7. | If `veca` and `vecb` are unequal unit vectors such that `(veca -vecb) xx [(vecb+veca) xx (2veca+vecb)]=veca+vecb`, then angle `theta` between `veca` and `vecb` can beA. `pi/2`B. 0C. `pi`D. `pi/4` | 
| Answer» Correct Answer - A::C `(veca-vecb) xx [(vecb + veca) xx (2veca + vecb)]=vecb + veca` `rArr {(veca -vecb).(2veca+ vecb)}(vecb+veca)-{(veca-vecb).(vecb+veca)}(2veca+vecb)=vecb+veca` `rArr vecb+veca=vec0` or `1-veca.vecb=1` `rArr vecb=-veca`or `veca.vecb=0` `rArr theta=pi` or `theta=pi/2` | |
| 8. | if `veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk` and `|vecc|=1` Such that `[veca xx vecb vecb xx vecc vecc xx veca]` has maximum value, then the value of `|(veca xx vecb) xx vecc|^(2)` is | 
| Answer» Correct Answer - A `[veca xx vecbvecb xx veccvecc xx veca]` `=[vecavecbvecc]^(2) = |vecc. (veca xx vecb)|^(2) cos^(2)theta` The maximum value of `[vecavecbvecc]` is possible only when `vecc` is parallel to `veca xx vecb`. `rArr theta=0` or `pi` Hence, `|(veca xx vecb) xx vecc|^(2) =|veca xx vecb|^(2)|vecc|^(2)sin^(2)theta=0` | |
| 9. | `veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk` and non zero vector `vecc` are such that `(veca xx vecb) xx vecc = veca xx (vecb xx vecc)`. Then vector `vecc` may be given asA. `4hati+2hatj+4hatk`B. `4hati-2hatj+4hatk`C. `hati+hatj+hatk`D. `hati-4hatj+hatk` | 
| Answer» Correct Answer - A `(veca xx vecb) xx vecc = veca xx (vecb xx vecc)` `rArr (veca.vecc)vecb-(vecb.vecc)veca` `=(veca.vecc)vecc-(veca.vecb)vecc` `rArr veca` and `vecc` are parallel. `therefore vecc` may be equal to `4hat(i)+2hatj+4hatk` | |
| 10. | If the angles between the vectors `veca` and `vecb,vecb` and `vecc,vecc` an `veca` are respectively `pi/6,pi/4` and `pi/3`, then the angle the vector `veca` makes with the plane containing `vecb`and `vecc`, isA. `cos^(-1)sqrt(1-sqrt(2//3))`B. `cos^(-1)sqrt(2-sqrt(3//2))`C. `cos^(-1)sqrt(sqrt(3//2)-1)`D. `cos^(-1)sqrt(sqrt(2//3))` | 
| Answer» Correct Answer - B Let `theta` be angle between `veca` and plane containing `vecb` and `vecc`. `therefore 90^(@)-theta`= angle b/w `veca` and `vecb xx vecc` `|hata xx (hatb xx hatc)|^(2)=|(hata.hatc)hatb-(hata.hatb)hatc|^(2)` `=sin^(2)(90^(@)-theta)sin^(2)pi/4 = |(cospi/3)hatb-(cospi/6)hatc|^(2)` `rArr cos^(2)theta xx 1/2 =1/4 +3/4-2 xx 1/2 xx sqrt(3)/2 xx 1/sqrt(2)` `=1-sqrt(3)/2sqrt(2)` `rArr cos^(2)theta=2-sqrt(3//2)` | |
| 11. | Volume of parallelogram whose adjacent sides are given by `veca, vecb, vecb xx vecc` is,A. 18B. 54C. 12D. 36 | 
| Answer» Correct Answer - D `vecb xx vecc = |{:(hati,hatj,hatk),(1,-1,1),(4,2,4):}|=-6hati+6hatk` `therefore [vecavecb xx vecc]=|{:(2,1,2),(1,-1,1),(-6,0,6):}|=-36` `therefore` Volume =36 | |
| 12. | A vector along the bisector of angle between the vectors `vecb` and `vecc` is,A. `(2+sqrt(3))hati + (1-sqrt(3))hatj+(2+sqrt(3))hatk`B. `(2+sqrt(3))hati+(1-sqrt(3))hatj-(2+sqrt(3))hatk`C. `(2+sqrt(3))hati-(1-sqrt(3))hatj-(2+sqrt(3))hatk`D. `(2+sqrt(3))hati-(1-sqrt(3))hatj+(2+sqrt(3))hatk` | 
| Answer» Correct Answer - A Vector along the bisectors is `(hati-hatj+hatk)/sqrt(3) + (4hati+2hatj+4hatk)/6` `1/3(2+sqrt(3))hati+(1-sqrt(3))hatj+(2+sqrt(3))hatk` `therefore` Vectors is `(2+sqrt(3))hati+(1-sqrt(3))hatj+(2+sqrt(3))hatk` | |