1.

1/a+1/b+1/x=1/a+b+x solve for x

Answer» {tex}\\frac { 1 } { a + b + x } = \\frac { 1 } { a } + \\frac { 1 } { b } + \\frac { 1 } { x }{/tex}or,\xa0{tex}\\frac { 1 } { a + b + x } - \\frac { 1 } { x } = \\frac { 1 } { a } + \\frac { 1 } { b }{/tex}or,\xa0{tex}\\frac { x - ( a + b + x ) } { x ( a + b + x ) } = \\frac { a + b } { a b }{/tex}or,\xa0{tex}\\frac { x - a - b - x } { x ( a + b + x ) } = \\frac { a + b } { a b }{/tex}or,\xa0{tex}\\frac { - ( a + b ) } { x ( a + b + x ) } = \\frac { a + b } { a b }{/tex}( by cancelled a+b on b/s)or,\xa0x(a + b+ x) = -abor,\xa0{tex}x ^ { 2 } + ( a + b ) x + a b = 0{/tex}or,\xa0{tex}x ^ { 2 } + a x + b x + a b = 0{/tex}or, x(x + a)+ b(x + b) = 0or, (x +a) ( x+ b) = 0or,\xa0x = - a or x = -b


Discussion

No Comment Found