1.

1/cosec A- cot A-1/sin A=1/sinA-1/cosecA+cot A

Answer» We have,\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { 1 } { \\text{cosec} A - \\cot A } - \\frac { 1 } { \\sin A }{/tex}=\xa0{tex}\\frac { 1 } { \\sin A } - \\frac { 1 } { \\text{cosec} A + \\cot A }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { 1 } { \\text{cosec} A - \\cot A } + \\frac { 1 } { \\text{cosec} A + \\cot A }{/tex}=\xa0{tex}\\frac { 1 } { \\sin A } + \\frac { 1 } { \\sin A }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { 1 } { \\text{cosec} A - \\cot A } + \\frac { 1 } { \\text{cosec} A + \\cot A }{/tex}=\xa0{tex}\\frac { 2 } { \\sin A }{/tex}LHS =\xa0{tex}\\frac { 1 } { \\text{cosec} A - \\cot A } + \\frac { 1 } { \\text{cosec} A + \\cot A }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { \\text{cosec} A + \\cot A + \\text{cosec} A - \\cot A } { ( \\text{cosec} A - \\cot A ) ( \\text{cosec} A + \\cot A ) }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { 2 \\text{cosec} A } { \\text{cosec} ^ { 2 } A - \\cot ^ { 2 } A }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { \\frac { 2 } { \\sin A } } { 1 } = \\frac { 2 } { \\sin A }{/tex}= RHS.Hence Proved.


Discussion

No Comment Found