Saved Bookmarks
| 1. |
1) If sin A = x , sec(A) = y , then tanA is |
|
Answer» Learn more:[tex]\\sf \\color{aqua}{Trigonometry\\: Table}\\\\ \\blue{\\boxed{\\boxed{\\begin{array}{ |c |c|c|c|c|c|} \\sf \\red{\\angle A} & \\red{\\sf{0}^{ \\circ} }&\\red{ \\sf{30}^{ \\circ} }& \\red{\\sf{45}^{ \\circ} }& \\red{\\sf{60}^{ \\circ}} &\\red{ \\sf{90}^{ \\circ}} \\\\ \\hline \\\\ \\rm \\red{sin A} & \\green{0} & \\green{\\dfrac{1}{2}}& \\green{\\dfrac{1}{ \\sqrt{2} }} &\\green{ \\dfrac{ \\sqrt{3}}{2} }&\\green{1} \\\\ \\hline \\\\ \\rm \\red{cos \\: A} & \\green{1} &\\green{ \\dfrac{ \\sqrt{3} }{2}}&\\green{ \\dfrac{1}{ \\sqrt{2} }} & \\green{\\dfrac{1}{2}} &\\green{0} \\\\ \\hline \\\\\\rm \\red{tan A}& \\green{0} &\\green{ \\dfrac{1}{ \\sqrt{3} }}&\\green{1} & \\green{\\sqrt{3}} & \\rm \\green{\\infty} \\\\ \\hline \\\\ \\rm \\red{cosec A }& \\rm \\green{\\infty} & \\green{2}& \\green{\\sqrt{2} }&\\green{ \\dfrac{2}{ \\sqrt{3} }}&\\green{1} \\\\ \\hline\\\\ \\rm \\red{sec A} & \\green{1 }&\\green{ \\dfrac{2}{ \\sqrt{3} }}& \\green{\\sqrt{2}} & \\green{2} & \\rm \\green{\\infty} \\\\ \\hline \\\\ \\rm \\red{cot A }& \\rm \\green{\\infty} & \\green{\\sqrt{3}}& \\green{1} & \\green{\\dfrac{1}{ \\sqrt{3} }} & \\green{0}\\end{array}}}}[/tex] $$sinA = x$$$$secA=y$$$$\\sf \\bf :\\longmapsto \\dfrac{1}{cosA} = y$$$$\\sf \\bf :\\longmapsto \\dfrac{sinA}{cosA} = xy$$$$\\sf \\bf :\\longmapsto tanA =xy$$Learn more:$$\\sf \\color{aqua}{Trigonometry\\: Table}\\\\ \\blue{\\boxed{\\boxed{\\begin{array}{ |c |c|c|c|c|c|} \\sf {\\angle A} & \\{\\sf{0}^{ \\circ} }&\\red{ \\sf{30}^{ \\circ} }& \\{\\sf{45}^{ \\circ} }& \\red{\\sf{60}^{ \\circ}} &{ \\sf{90}^{ \\circ}} \\\\ \\hline \\\\ \\rm {sin A} & \\green{0} & {\\dfrac{1}{2}}& {\\dfrac{1}{ \\sqrt{2} }} &{ \\dfrac{ \\sqrt{3}}{2} }&{1} \\\\ \\hline \\\\ \\rm {cos \\: A} & {1} &{ \\dfrac{ \\sqrt{3} }{2}}&{ \\dfrac{1}{ \\sqrt{2} }} & {\\dfrac{1}{2}} &{0} \\\\ \\hline \\\\\\rm {tan A}& {0} &{ \\dfrac{1}{ \\sqrt{3} }}&{1} & {\\sqrt{3}} & \\rm {\\infty} \\\\ \\hline \\\\ \\rm {cosec A }& \\rm {\\infty} & {2}& {\\sqrt{2} }&{ \\dfrac{2}{ \\sqrt{3} }}&{1} \\\\ \\hline\\\\ \\rm {sec A} & {1 }&{ \\dfrac{2}{ \\sqrt{3} }}& {\\sqrt{2}} & {2} & \\rm {\\infty} \\\\ \\hline \\\\ \\rm {cot A }& \\rm {\\infty} & {\\sqrt{3}}& {1} & {\\dfrac{1}{ \\sqrt{3} }} &{0}\\end{array}}}}$$ Tan A = SinA/Cos ASec A = 1/Cos ASo TanA = SinA * Sec A = x*y = xy |
|