1.

`3^(log_3log sqrtx) -log x + (log x)^2 - 3 =0`

Answer» `3^(log_3 logsqrtx) - logx +(logx)^2 - 3 = 0`
We know, `a^(log_a b) = b`, so our equation becomes,
`=>logsqrtx - logx +(logx)^2 - 3 = 0`
`=>1/2logx - logx +(logx)^2 - 3 = 0`
`=>(logx)^2 - logx/2 - 3 = 0`
`=>2(logx)^2 - logx - 6 = 0`
`=>2(logx)^2 - 4logx+3logx - 6 = 0`
`=>(2logx+3)(logx - 2) = 0`
`=>logx = -3/2 and logx = 2`
`=>x = e^(-3/2) and x = e^2.`


Discussion

No Comment Found