InterviewSolution
Saved Bookmarks
| 1. |
3x*3x+11x+10 by method of completing square |
| Answer» The given equation is{tex}\\Rightarrow{/tex}\xa03x2 +11x + 10 = 0Now, we have to find two numbers such that their sum is 11 and product is 3{tex}\\times{/tex}10 = 30. Clearly, 5 +6 =11 and 5{tex}\\times{/tex}6 = 30{tex}\\Rightarrow{/tex}\xa03x2 + 6x + 5x + 10 = 0{tex}\\Rightarrow{/tex}\xa03x(x + 2) +5(x + 2) = 0{tex}\\Rightarrow{/tex}\xa0(3x+5)(x+2) = 0Either, 3x+5 =0\xa0{tex}\\Rightarrow{/tex}\xa0{tex}{/tex}\xa0{tex}x= - \\frac{5}{3}{/tex}Or, x+2 =0 {tex}\\Rightarrow{/tex}\xa0x = -2Hence, the required roots of given equation are -2 and\xa0{tex}-\\frac{{5}}{3}{/tex} | |