1.

4s square -4s+1

Answer» g(s)=4s2 - 4s + 1Here, a = 4, b = -4 and c = 1We have, 4s2 - 4s + 1= 4s2 - 2s - 2s + 1= 2s\xa0(2s\xa0− 1) − 1 (2s\xa0− 1)= (2s\xa0− 1) (2s\xa0− 1)g(s) =0 if 2s-1=0\xa0Hence\xa0{tex}\\text{s=}\\frac12\\text{,}\\frac12{/tex}Sum of zeroes\xa0{tex}\\text{=}\\frac12+\\frac12=1\\operatorname{=-}\\frac{-4}4=-\\frac{\\mathrm b}{\\mathrm a}=-\\frac{\\mathrm{coefficient}\\;\\mathrm{of}\\;\\mathrm s}{\\mathrm{coefficient}\\;\\mathrm{of}\\;\\mathrm s^2}{/tex}{tex}{/tex}Product of Zeroes= {tex}\\frac12\\text{×}\\frac12=\\frac14=\\frac{\\mathrm c}{\\mathrm a}=\\frac{\\mathrm{constant}\\;\\mathrm{term}}{\\mathrm{coefficient}\\;\\mathrm{of}\\;\\mathrm s^2}{/tex}


Discussion

No Comment Found