1.

√(5+12i)

Answer»

Let, (a + ib)2 = 5 + 12i

Now using, (a + b)2 = a2 + b2 + 2ab

⇒ a2 + (bi)2 + 2abi = 5 + 12i

Since i2 = -1

a2 - b2 + 2abi = 5 + 12i

Now, separating real and complex parts, we get

⇒ a2 - b2 = 5…………..eq.1

⇒ 2ab = 12……..eq.2

⇒ a = 6/b

Now, using the value of a in eq.1, we get

⇒ (6/b)2 – b2 = 5

⇒ 36 – b4 = 5b2

⇒ b4 + 5b2 - 36 = 0

Simplify and get the value of b2, we get,

b2 = - 9 or b2 = 4

As b is real no. so, b2 = 4

b = 2 or b = - 2

Therefore, a = 3 or a = - 3

Hence the square root of the complex no. is 3 + 2i and - 3 -2i.



Discussion

No Comment Found