InterviewSolution
Saved Bookmarks
| 1. |
√(5+12i) |
|
Answer» Let, (a + ib)2 = 5 + 12i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = 5 + 12i Since i2 = -1 a2 - b2 + 2abi = 5 + 12i Now, separating real and complex parts, we get ⇒ a2 - b2 = 5…………..eq.1 ⇒ 2ab = 12……..eq.2 ⇒ a = 6/b Now, using the value of a in eq.1, we get ⇒ (6/b)2 – b2 = 5 ⇒ 36 – b4 = 5b2 ⇒ b4 + 5b2 - 36 = 0 Simplify and get the value of b2, we get, b2 = - 9 or b2 = 4 As b is real no. so, b2 = 4 b = 2 or b = - 2 Therefore, a = 3 or a = - 3 Hence the square root of the complex no. is 3 + 2i and - 3 -2i. |
|