InterviewSolution
Saved Bookmarks
| 1. |
Find the principal argument of (–2i). |
|
Answer» Let, z = -2i Let 0 = r cosθ and -2 = r sinθ By squaring and adding, we get (0)2 + (-2)2 = (r cosθ)2 + (r sinθ)2 ⇒ 0+4 = r2 (cos2θ + sin2θ) ⇒ 4 = r2 ⇒ r = 2 ∴ cosθ = 0 and sinθ = -1 Since, θ lies in fourth quadrant, we have θ = -π/2 Since, θ ∈ (-π ,π ] it is principal argument. |
|