1.

8x+5y=93x+2y=4Solve using elimination method

Answer» ANSWERMultiply the equation\xa08x+5y=9\xa0by\xa03\xa0and\xa0equation\xa03x+2y=4\xa0by\xa03\xa0to make the coefficients of\xa0x\xa0equal. Then we get the equations:24x+15y=27.........(1)24x+16y=32.........(2)Subtract Equation (1) from Equation (2) to eliminate\xa0x, because the coefficients of\xa0x\xa0are the same. So, we get(24x−24x)+(16y−15y)=32−27i.e.\xa0y=5Substituting this value of\xa0y\xa0in\xa0the equation\xa08x+5y=9,\xa0we get8x+25=9i.e.\xa08x=−16i.e.\xa0x=−2Hence, the solution of the equations is\xa0x=−2,y=5.
Let 1 and 2 be equation 1 and 2 respectively Multiplying equation 1 by 216x+ 10y = 18---- equation 3Multiplying equation 2 by 515x +10y =20------ equation 4equation 3-equation 416x+10y=18-(+15x+10y=20)___________________x=-2Putting value of x in equation 316(-2)+10y=18-32+10y=1810y=18+3210y=50Y=50÷10Y=10


Discussion

No Comment Found