1.

( a+ b) ^2 x^2 + 8(a^2 -b^2 ) x + 16 (a-b )^2 = 0 solve by using completing the squares method.

Answer» {tex}(a + b)^2x^2\xa0+ 8(a^2 - b^2)x + 16(a - b)^2 = 0{/tex}{tex}A = (a + b)^2,\\ B = 8(a^2 - b^2),\\ C = 16(a - b)^2\xa0{/tex}D = B2 - 4AC= [8(a2 - b2)]2 - 4 {tex}\\times{/tex}\xa0(a + b)216(a - b)2\xa0= 64(a2 - b2)2 - 64(a2 - b2)2 = 0{tex}\\therefore{/tex}x =\xa0{tex}\\frac{-B}{2A}{/tex}\xa0=\xa0{tex}\\frac { - 8 \\left( a ^ { 2 } - b ^ { 2 } \\right) } { 2 ( a + b ) ^ { 2 } }{/tex}\xa0=\xa0{tex}\\frac { - 4 ( a - b ) } { a + b }{/tex}


Discussion

No Comment Found