1.

(a+b)x + (a-b)y = a*2+b*2 (a-b)x + (a+b)y = a*2+b*2*:this number squre with varible

Answer» (a+b)x+(a-b)y=a2+b2\xa0---------(1)(a-b)x+(a+b)y=a2+b2\xa0----------(2)On adding eq(1)and (2) we get(a+b)x+(a-b)y+(a-b)x+(a+b)y=2a2+2b2\xa0(a+b+a-b)x+(a-b+a+b)y=2(a2+b2)2ax+2ay=2(a2+b2)2(ax+ay)=2(a2+b2) ax+ay=a2+b2\xa0-------(3)Now subtracting eq(1) and(2)(a+b)x+(a-b)y -[(a-b)x+(a+b)y]=0(a+b-a+b)x+(a-b-a-b)y =0 2bx-2by=0 2bx=2by x=y ------(4)Subtitute value of x from eq(4) into eq(3) we getay+ay=a2+b2 2ay=a2+b2 y=\xa0{tex}{a^2+b^2\\over 2a}{/tex}From eq (4)\xa0x=y={tex}{a^2+b^2\\over 2a}{/tex}\xa0


Discussion

No Comment Found