1.

A line joining points p(3, 4) and Q(7, a) is parallel to 3x – y + 20 = 0. Then what is the value of a? 1. –82. –163. 84. 16

Answer» Correct Answer - Option 4 : 16

Given:

A line joining points P(3, 4) and Q(7, a) is parallel to 3x – y + 20 = 0.

Formula used:

If points are given (x1, y1) and (x2, y2)

Then slope = (y2 – y1)/(x2 – x1)

If a line equation is written in format y = mx +c 

Where m is the slope of the line.

The slope of parallel lines is equal.

Calculation:

Slope of the line 3x – y + 20 = 0 is 

⇒ y = 3x + 20

So, slope of the line is 3

And slope of point P(3, 4) and Q(7, a) is 3

⇒ slope = (y2 – y1)/(x2 – x1)

⇒ 3 = (a – 4)/(7 – 3)

⇒ 12 = a – 4

⇒ a = 12 + 4

⇒ a = 16

∴ The value of the a is 16.



Discussion

No Comment Found

Related InterviewSolutions