InterviewSolution
| 1. |
In an isosceles right-angled triangle, the perimeter is 30 m. Find its area (Approximate)1. 38.63 m22. 40 m23. 39.60 m24. 37.86 m2 |
|
Answer» Correct Answer - Option 1 : 38.63 m2 Given: Perimeter = 30 m Concept used: Perimeter of an isosceles triangle = 2x + y Area of an isosceles right angle triangle = 1/2 × x2 x = equal sides of an isosceles triangle Calculation: In an isosceles right angled triangle, the two sides on the right angle are equal Let the equal sides be a Hence, hypotenuse of the isosceles right angled triangle = \(√ {{{\rm{a}}^2} + {{\rm{a}}^2}} = √ 2 {\rm{a}}\) \(\rm a + a\;+ √2a = 30\) ⇒ \(\rm 2a\;+ √2a = 30\) ⇒ \(\rm a(2\;+ √2) = 30\) ⇒ \(\rm a = \frac{30}{(2\;+ √2)}\) ⇒ \(\rm a = \frac{30(2\;-\; √2)}{(2\;+\;√2)(2\;-\; √2)}\) ⇒ \(\rm a = \frac{30(2\;-\; √2)}{2^2\;-\;(√2)^2}\) ⇒ \(\rm a = \frac{30(2\;-\; √2)}{4\;-\;2}\) ⇒ \(\rm a = \frac{30(2\;-\; √2)}{2}\) ⇒ \(\rm a = 15(2\;-\; √2)\) 1/2 × (15(2 – √2))2 ⇒ 1/2 × 225(4 + 2 – 4√2) ⇒ 112.5(6 – 5.6568) [√2 = 1.4142] ⇒ 112.5(0.3432) ⇒ 38.626 ≈ 38.63 m ∴ Area of the triangle is 38.63 m (Approximate) |
|