InterviewSolution
| 1. |
Find the angle between given lines:y – √3x = 2 and \(\frac{1}{{\surd 3}}\)x – y = –4 1. 0° 2. 30° 3. 45° 4. 60° 5. None of the above/ More than one of the above. |
|
Answer» Correct Answer - Option 2 : 30° Given: Two lines are, y – √3x = 2 and \(\frac{1}{{\surd 3}}\)x – y = –4 Formula Used: y = mx + c, where, m is the slope of a line. tanθ = |\(\frac{{m1 - m2}}{{1 + \left( {m1 \times m2} \right)}}\)| where, m1 is the slope of the first line. m2 is the slope of the second line. Calculation: For 1st equation, ⇒ y – √3x = 2 ⇒ y = 2 + √3x ⇒ m1 = √3 For 2nd equation, ⇒ \(\frac{1}{{\surd 3}}\)x – y = –4 ⇒ –y = –4 – \(\frac{1}{{\surd 3}}\)x ⇒ y = 4 + \(\frac{1}{{\surd 3}}\)x ⇒ m2 = 1/√3 tanθ = |\(\frac{{m1 - m2}}{{1 + \left( {m1 \times m2} \right)}}\)| ⇒ tanθ = |\(\frac{{√ 3 \; - \;1/\surd 3}}{{1 + \left( {√ 3 \times 1/\surd 3} \right)}}\)| ⇒ tanθ = |(2/√3)/2 | ⇒ tanθ = |1/√3 | ⇒ tanθ = 1/√3 We know that, tan 30° = 1/√3 ⇒ θ = 30° ∴ Angle between two lines is 30°. |
|