1.

Find the angle between given lines:y – √3x = 2 and \(\frac{1}{{\surd 3}}\)x – y = –4 1. 0° 2. 30° 3. 45° 4. 60° 5. None of the above/ More than one of the above.

Answer» Correct Answer - Option 2 : 30° 

Given:

Two lines are,

y – √3x = 2 and \(\frac{1}{{\surd 3}}\)x – y = –4 

Formula Used:

y = mx + c,

where,

m is the slope of a line.

tanθ = |\(\frac{{m1 - m2}}{{1 + \left( {m1 \times m2} \right)}}\)|

where,

m1 is the slope of the first line. 

m2 is the slope of the second line.

Calculation:

For 1st equation,

⇒ y – √3x = 2 

⇒ y = 2 + √3x

⇒ m1 = √3

For 2nd equation,

⇒ \(\frac{1}{{\surd 3}}\)x – y = –4 

⇒ –y = –4 – \(\frac{1}{{\surd 3}}\)x

⇒ y = 4 + \(\frac{1}{{\surd 3}}\)x

⇒ m2 = 1/√3

tanθ = |\(\frac{{m1 - m2}}{{1 + \left( {m1 \times m2} \right)}}\)

⇒ tanθ = |\(\frac{{√ 3 \; - \;1/\surd 3}}{{1 + \left( {√ 3 \times 1/\surd 3} \right)}}\)|

⇒ tanθ = |(2/√3)/2 |

⇒ tanθ = |1/√3 |

⇒ tanθ = 1/√3

We know that, tan 30° = 1/√3

⇒ θ = 30°    

∴ Angle between two lines is 30°.



Discussion

No Comment Found

Related InterviewSolutions