1.

A square OABC is inscribed in a quadratic OPBQ if OA 20cm find the area of shared regions

Answer» In ΔOAB,OB2\xa0= OA2\xa0+ AB2= (20)2\xa0+ (20)2=2(20)2OB =\xa0{tex}20\\sqrt 2{/tex}Radius (r) of circle =\xa0{tex}20\\sqrt 2{/tex}\xa0cm\xa0Area of quadrant OPBQ ={tex}\\frac{90}{360} \\times \\pi \\times {(20 \\sqrt 2)}^2{/tex}= 628 cm2Area of OABC = (Side)2= (20)2= 400 cm2Area of shaded region = Area of quadrant OPBQ - Area of OABC= (628 - 400)= 228 cm2


Discussion

No Comment Found