InterviewSolution
Saved Bookmarks
| 1. |
A vertical pole of length 6cm castsa shadow 4m long on the ground |
| Answer» Let AB denoted the vertical pole of length 6m.BC is the shadow of the pole on the ground BC = 4m.Let DE denote the tower.EF is shadow of the tower on the ground.EF = 28 m.Let the height of the tower be h m.In {tex}\\triangle {/tex}ABC and {tex}\\triangle {/tex}DEF,{tex}\\angle{/tex}B = {tex}\\angle{/tex}E ......[Each equal to 90o because pole and tower are standing vertical to the ground]{tex}\\angle{/tex} C = {tex}\\angle{/tex} F .....[Same elevation]{tex}\\angle{/tex}A = {tex}\\angle{/tex}D {tex}\\because {/tex} shadows\xa0are cast at the same time{tex}\\therefore {/tex}{tex}\\triangle {/tex}ABC and {tex}\\triangle {/tex}DEF,{tex}\\angle{/tex}B= {tex}\\angle{/tex} E ............[Each equal to 90o because pole and tower are standing vertical to the ground.]{tex}\\angle{/tex}A={tex}\\angle{/tex}D ({tex}\\because {/tex}shadows\xa0are cast at the same time){tex}\\therefore {/tex}{tex}\\vartriangle {/tex}ABC ~{tex}\\vartriangle {/tex}DEF ......(AA similarity criterion){tex}\\therefore {/tex}{tex}\\frac{{AB}}{{DE}} = \\frac{{BC}}{{EF}}{/tex} ...........[{tex}\\because {/tex} corresponding sides of two similar triangles are proportional]{tex}\\Rightarrow {/tex}{tex}\\frac{6}{h} = \\frac{4}{{28}}{/tex}{tex}\\Rightarrow {/tex}{tex}h = \\frac{{6 \\times 28}}{4} \\Rightarrow h = 42{/tex}Hence, the height of the tower is 42 m | |