1.

ABC is an isosceles triangle.in which AD is median so prove that AB+AC>2AD

Answer» In {tex}\\triangle{/tex}ADB and {tex}\\triangle{/tex}EDC,AD = DE ...... [By construction]BD = BC ....... [As AD is median of {tex}\\triangle{/tex}ABC]∠ADB = ∠EDC ........ [Vertically opposite angles]{tex}\\triangle A D B \\cong \\triangle E D C{/tex}\xa0......... [SAS axiom]AB = EC ....... [c.p.c.t.] ....... (1)In {tex}\\triangle{/tex}AEC,AC + EC > AE ....... [As the sum of any two sides of a triangle is greater than the third side]AC + AB > AE ...... [From (1)AB + AC > AEAB + AC > 2AD ....... [By construction]


Discussion

No Comment Found