InterviewSolution
Saved Bookmarks
| 1. |
At the moment `t=0` a stationary particle of mass m experiences a time-dependent force `F=at(tau-t)`, whera a is a constant vector, `tau` is the time during which the given force acts. Find: (a) the momentum of the particle when the action of the force discontinued: (b) the distance covered by the particle while the force acted. |
|
Answer» From the equation of the given time dependence force `vecF=vecat(pi-t)` at `t=pi`, the force vanishes, (a) Thus `Deltavecp=vecp=underset(0)overset(tau)int vecFdt` or, `vecp=underset(0)overset(tau)int vecat(tau-t)dt(vecatau^3)/(6)` but `vecp=mvecv` so `vecv=(vecatau^3)/(6m)` (b) Again from the equation `vecF=mvecw` `vecat(tau-t)=m(dvecv)/(dt)` or, `veca(ttau-t^2)dt=mdvecv` Integrating within the limits for `vecv(t)`, `underset(0)overset(t)int veca(t tau-t^2)dt=m underset(0)overset(vecv)intdvecv` or, `vecv=(veca)/(m)((taut^2)/(2)-(t^3)/(3))=(vecat^2)/(m)(tau/2-t/3)` Thus `v=(at^2)/(m)(tau/2-t/3)` for `tletau` Hence distance covered during the time interval `t=tau`, `s=underset(0)overset(tau)int v dt` `=underset(0)overset(tau)(at^2)/(m)(tau/2-t/3)dt=a/m(tau^4)/(12)` |
|