1.

cos A — sinA + 1 ÷ cosA + sinA — 1 = cosecA + cotA. Prove using cosec square A = 1+cot square A

Answer» =[CosA—SinA +1/CosA+Sin—1]×[CosA +SinA +1/CosA +SinA +1]=[Cos²A+CosA.SinA+CosA—CosA.SinA—Sin²A—SinA+CosA+SinA+1]/(CosA+SinA)²—(1)²=[Cos²A+2CosA+1—Sin²A]/[Cos²A+Sin²A+2SinACosA—1]----[:CosA.SinA—CosA.SinA=0, SinA—SinA=0]----=[2Cos²A+2CosA]/[1—1+2SinA.CosA]----[:1—Sin²A=Cos²A and Cos²A+Sin²A=1]=[2CosA(CosA+1)/[2SinA.CosA]=CosA+1/SinA--------[2CosA/2CosA=1]=CosA/SinA+1/SinA=CotA+CosecA, Hence Prooved
It\'s N.C.E.R.T ques


Discussion

No Comment Found