InterviewSolution
Saved Bookmarks
| 1. |
Determine K so that 4K + 8 , 2ksquare +3k+6 and 3ksquare +4k +4 |
| Answer» We know that if a, b, c are three consecutive terms of an A.P., thenb - a = c - b i.e. 2b = a + c Thus, if k2 + 4k + 8, 2k2 + 3k + 6 and 3k2 + 4k + 4 are three consecutive terms of an A.P., thena = k2 + 4k + 8, b = 2k2 + 3k + 6, c = 3k2 + 4k + 4\xa02b = a + c2 (2k2 +3k + 6) = (k2 + 4k + 8) + (3k2 + 4k + 4)\xa0⇒ 4k2 + 6k + 12 = k2 + 4k + 8 + 3k2 + 4k + 4\xa0⇒ 4k2 + 6k + 12 = 4k2 + 8k + 12\xa0⇒ 2k = 0 \xa0⇒\xa0k = 0. | |