1.

Determine whether the following operation define a binary operation on the given set or not:(i) ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a × 6b = Remainder when ab is divided by 6.(ii) ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a + 6b= {(a + b, if a + b < 6), (a + b - 6, if a + b ≥ 6)(iii) ‘⊙’ on N defined by a ⊙ b= ab + ba for all a, b ∈ N(iv) ‘*’ on Q defined by a * b = (a – 1)/(b + 1) for all a, b ∈ Q

Answer»

(i) Given that ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a × 6b = Remainder when ab is divided by 6.

Consider the table,

X612345
112345
224024
330303
442042
554321

Here all elements of table are not in S.

⇒ For a = 2 and b = 3,

a × 6b = 2 × 63 = remainder when 6 divided by 6 = 0 ≠ S

So, ×6 is not a binary operation on S.

(ii) Given ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a + 6b

= {(a + b, if a + b < 6), (a + b - 6, if a + b ≥ 6)

Consider the table

+6012345
0012345
1123450
2234501
3345012
4450123
5501234

Here all elements of table are not in S.

⇒ For a = 2 and b = 3,

a × 6b = 2 × 63 = remainder when 6 divided by 6 = 0 ≠ Thus, ×6 is not a binary operation on S.

(iii) Given that ‘⊙’ on N defined by a ⊙ b = ab + ba for all a, b ∈ N

Let a, b ∈ N. Then,

ab, ba ∈ N

⇒ ab + ba ∈ N [∵Add in binary operation on N]

⇒ a ⊙ b ∈ N

So, ⊙ is a binary operation on N.

(iv) Given ‘*’ on Q defined by a * b = (a – 1)/(b + 1) for all a, b ∈ Q

If a = 2 and b = -1 in Q,

a * b = (a – 1)/(b + 1)

= (2 – 1)/(- 1 + 1)

= 1/0 [which is not defined]

For a = 2 and b = -1

a * b does not belongs to Q

Therefore, * is not a binary operation in Q.



Discussion

No Comment Found