InterviewSolution
| 1. |
Determine whether the following operation define a binary operation on the given set or not:(i) ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a × 6b = Remainder when ab is divided by 6.(ii) ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a + 6b= {(a + b, if a + b < 6), (a + b - 6, if a + b ≥ 6)(iii) ‘⊙’ on N defined by a ⊙ b= ab + ba for all a, b ∈ N(iv) ‘*’ on Q defined by a * b = (a – 1)/(b + 1) for all a, b ∈ Q |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Answer» (i) Given that ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a × 6b = Remainder when ab is divided by 6. Consider the table,
Here all elements of table are not in S. ⇒ For a = 2 and b = 3, a × 6b = 2 × 63 = remainder when 6 divided by 6 = 0 ≠ S So, ×6 is not a binary operation on S. (ii) Given ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a + 6b = {(a + b, if a + b < 6), (a + b - 6, if a + b ≥ 6) Consider the table
Here all elements of table are not in S. ⇒ For a = 2 and b = 3, a × 6b = 2 × 63 = remainder when 6 divided by 6 = 0 ≠ Thus, ×6 is not a binary operation on S. (iii) Given that ‘⊙’ on N defined by a ⊙ b = ab + ba for all a, b ∈ N Let a, b ∈ N. Then, ab, ba ∈ N ⇒ ab + ba ∈ N [∵Add in binary operation on N] ⇒ a ⊙ b ∈ N So, ⊙ is a binary operation on N. (iv) Given ‘*’ on Q defined by a * b = (a – 1)/(b + 1) for all a, b ∈ Q If a = 2 and b = -1 in Q, a * b = (a – 1)/(b + 1) = (2 – 1)/(- 1 + 1) = 1/0 [which is not defined] For a = 2 and b = -1 a * b does not belongs to Q Therefore, * is not a binary operation in Q. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||