

InterviewSolution
Saved Bookmarks
1. |
differentiate: log(logx) |
Answer» Let `y="log"("log"x)` `implies(dy)/(dx)=(d)/(dx)"log"("log"x)` `=(1)/("log"x)(d)/(dx)("log"x)` `=(1)/(x"log"x)=(x log x)^(-1)` `implies(d^(2)y)/(dx^(2))=(d)/(dx)(x log x)^(-1)` `= -1* (x logx)^(-2)(d)/(dx)(x logx)` `=([x*(d)/(dx)logx+"log"x(d)/(dx)x])/((xlogx)^(2))` `=([x*(1)/(x)+"log"x])/((xlogx)^(2))` `=((1+"log"x))/((xlogx)^(2))` |
|