

InterviewSolution
Saved Bookmarks
1. |
Differentiate `(log x)^(cos x)` with respect to x. |
Answer» `"Let " y = ("log "x)^("cos "x)` `rArr "log " y = "log "{("log "x)^("cos "x)}` `= "cos "x * "log "("log "x)` Diffenentiate both sides w.r.t.x `(1)/(y) (dy)/(dx) = "cos "x * (d)/(dx)"log" ("log " x) + "log"("log " x)(d)/(dx)"cos"x` `rArr (dy)/(dx) = y {("cos"x)/("log"x)*(d)/(dx)("log"x)+"log"("log" x)(-"sin"x)}` `rArr (dy)/(dx) =("log" x)^("cos"x){("cos"x)/(x*"log"x)-"sin"x * "log" x ("log"x)}` |
|