

InterviewSolution
Saved Bookmarks
1. |
Differentiate the following w.r.t. x:`(logx)^x+x^(logx)` |
Answer» `y = x^("log" x) + ("log" x)^(x)` `=u + v " " (say)` `implies (dy)/(dx) = (du)/(dx) + (dv)/(dx) " " ….(1)` `"Now",u=x^("log"x)` `rArr " log"u-"log"(x^("log"x))-"log"x*"log"x-("log"x)^(2)` `rArr (1)/(u)(du)/(dx) = (2"log"x)/(x)` `rArr (du)/(dx) = (2u "log"x)/(x) = (2"log"x)/(x).x^("log"x)` `"and "v = ("log"x)^(x)` `rArr "log"v = "log" ("log"x)^(x) = x"log" ("log"x)` `rArr (1)/(v) (dv)/(dx) = (x)/(x"log"x) + "log"("log"x)` `rArr (dv)/(dx) = v[(1)/("log"x) + "log"("log"x)]` `=("log"x)^(x) [(1)/("log"x) + "log"("log"x)]` From equation (1) `(dy)/(dx) = x^("log"x)*(2"log"x)/(x) + ("log"x)^(x)[(1)/("log"x) + "log"("log"x)]` |
|