

InterviewSolution
Saved Bookmarks
1. |
Differentiate w.r.t. x the function`(cos^(-1)x/2)/(sqrt(2x+7)),-2 |
Answer» Let `y=("cos"^(-1)(x)/(2))/(sqrt(2x+7))` `implies (dy)/(dx)=(sqrt(2x+7)*(d)/(dx)"cos"^(-1)(x)/(2)-"cos"^(-1)(x)/(2)*(d)/(dx)sqrt(2x+7))/((sqrt(2x+7))^(2))` `=(sqrt(2x+7)*((-1))/(sqrt(1-(x^(2))/(4)))*(d)/(dx)((x)/(2))-"cos"^(-1)(x)/(2)*(1)/(2sqrt(2x+7))*(d)/(dx)(2x+7))/((2x+7))` `=((-sqrt(2x+7))/(sqrt(4-x^(2)))-("cos"^(-1)(x)/(2))/(sqrt(2x+7)))/((2x+7))` `= -[(sqrt(2x+7))/(sqrt(4-x^(2))*(2x+7))+("cos"^(-1)(x)/(2))/((2x+7)sqrt(2x+7))]` `= -[(1)/(sqrt(4-x^(2))sqrt(2x+7))+("cos"^(-1)(x)/(2))/((2x+7)^(3//2))]` |
|