1.

Differentiate w.r.t. x the function`(cos^(-1)x/2)/(sqrt(2x+7)),-2

Answer» Let `y=("cos"^(-1)(x)/(2))/(sqrt(2x+7))`
`implies (dy)/(dx)=(sqrt(2x+7)*(d)/(dx)"cos"^(-1)(x)/(2)-"cos"^(-1)(x)/(2)*(d)/(dx)sqrt(2x+7))/((sqrt(2x+7))^(2))`
`=(sqrt(2x+7)*((-1))/(sqrt(1-(x^(2))/(4)))*(d)/(dx)((x)/(2))-"cos"^(-1)(x)/(2)*(1)/(2sqrt(2x+7))*(d)/(dx)(2x+7))/((2x+7))`
`=((-sqrt(2x+7))/(sqrt(4-x^(2)))-("cos"^(-1)(x)/(2))/(sqrt(2x+7)))/((2x+7))`
`= -[(sqrt(2x+7))/(sqrt(4-x^(2))*(2x+7))+("cos"^(-1)(x)/(2))/((2x+7)sqrt(2x+7))]`
`= -[(1)/(sqrt(4-x^(2))sqrt(2x+7))+("cos"^(-1)(x)/(2))/((2x+7)^(3//2))]`


Discussion

No Comment Found