

InterviewSolution
Saved Bookmarks
1. |
Differentiate `x^x^(2-3)+(x-3)^x^2`with respect to `x`: |
Answer» Let `y=x^(x^(2)-3)+(x-3)^(x^(2))` Let `u=x^(x^(2)-3)" and "v=(x-3)^(x^(2))` ` :. y=u+v` `implies(dy)/(dx)=(du)/(dx)+(dv)/(dx) " " `...(1) Now, `u=x^(x^(2))-3` `implieslogu=logx^(x^(2)-3)=(x^(2)-3)logx` `implies(1)/(u)(du)/(dx)=(x^(2)-3)(d)/(dx)logx+logx*(d)/(dx)(x^(2)-3)` `implies(du)/(dx)=u[(x^(2)-3)/(x)+2xlogx]` `=x^(x^(2)-3)*[(x^(2)-3)/(x)+2xlogx]` and `v=(x-3)^(x^(2))` `implieslogv=log(x-3)^(x^(2))=x^(2)log(x-3)` `implies(1)/(v)(dv)/(dx)=x^(2)*(d)/(dx)log(x-3)+log(x-3)(d)/(dx)x^(2)` `implies(dv)/(dx)=v[(x^(2))/(x-3)+2x log(x-3)]` `(x-3)^(x^(2))[(x^(2))/(x-3)+2x log(x-3)]` ` :.`From equation (1) `(dy)/(dx)=x^(x^(2)-3)[(x^(2)-3)/(x)+2xlogx]+(x-3)^(x^(2))[(x^(2))/(x-3)+2xlog(x-3)]` |
|