

InterviewSolution
Saved Bookmarks
1. |
Discuss the continuity of `f(x)=|x|+|x-1| ` at x=0 and x=1. |
Answer» `f(x)=|x|={:{(x, xge 0),(-x,x lt 0):}` and `abs(x-1)={:{(x-1, xge 1),(-(x-1), xlt 1):}` `therefore f(x)=abs(x)+|x-1|={:{(1-2x, x lt 0),(1, 0 le x lt1),(2x-1, x ge1):}` At x=0 f(0)=1 `R.H.L=underset(xrarr0^+)lim=underset(xrarr)lim f(0+h)=underset(xrarr0)lim 1=1` `L.H.L=underset(xrarr0^-)lim=underset(xrarr0)lim f(0+h)` `=underset(hrarr0)lim{-(0-h)}=0` `therefore` R.H.L = f(0)=L.H.L `therefore` f(x) is constinuous at x=0 Hence proved. |
|