InterviewSolution
Saved Bookmarks
| 1. |
दिया गया है कि `a_(n)=int(sin^(2){(n+1)x})/(sin2x)dx` `int_(0)^(4pi)|cosx|dx` किसके बराबर है ? |
|
Answer» Correct Answer - D माना `I=int_(0)^(4pi)|cosx|dx` `=2int_(0)^(2pi)|cosx|dx` `[becauseint_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx"यदि"f(2a-x)=f(x),"यहाँ",|cos(4pi-x)|=|cosx|]` `=2*2int_(0)^(pi)|cosx|dx` `[because|cos(2pi-x)|=|cosx|]` `=2*2*2int_(0)^(pi//2)|cosx|dx` `[because|cos(pi-x)|=|-cosx|=|cosx|]` `=8int_(0)^(pi//2)cosxdx` `[becausecosxgt0,AAx in(0,(pi)/(2))]` `=8[sinx]_(0)^(pi//2)=8["sin"(pi)/(2)-sin0]=8` |
|