1.

`e^(x)"sin"5x`

Answer» Let `y=e^(x)"sin"5x`
`implies(dy)/(dx)=(d)/(dx)(e^(x)"sin" 5x)`
`=e^(x)*5" cos"5x+"sin"5x*e^(x)`
`=e^(x)(5" cos"5x+"sin"5x) `
`implies (d^(2)y)/(dx^(2))=(d)/(dx)[e^(x)(5" cos"5x+"sin"5x)]`
`=e^(x)(-25" sin"5x+5" cos"5x)+(5" cos"5x+"sin"5x)e^(x)`
`=e^(x)(10" cos"5x-24" sin"5x)`
`=2e^(x)(5" cos"5x-12" sin"5x)`


Discussion

No Comment Found