

InterviewSolution
Saved Bookmarks
1. |
`e^(x)"sin"5x` |
Answer» Let `y=e^(x)"sin"5x` `implies(dy)/(dx)=(d)/(dx)(e^(x)"sin" 5x)` `=e^(x)*5" cos"5x+"sin"5x*e^(x)` `=e^(x)(5" cos"5x+"sin"5x) ` `implies (d^(2)y)/(dx^(2))=(d)/(dx)[e^(x)(5" cos"5x+"sin"5x)]` `=e^(x)(-25" sin"5x+5" cos"5x)+(5" cos"5x+"sin"5x)e^(x)` `=e^(x)(10" cos"5x-24" sin"5x)` `=2e^(x)(5" cos"5x-12" sin"5x)` |
|