InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : (i) `intxsec^(2)xdx` (ii) `intxsin2xdx` |
|
Answer» (i) Integrating by parts, taking x as the first function, we have `intxsec^(2)xdx=x*intsec^(2)xdx-int{(d)/(dx)(x)*intsec^(2)xdx}dx` `=xtanx-int1*tanxdxtanx+log|cosx|+C`. (ii) Integrating by parts, taking x as the first function, we get `intxsin2x=x*intsin2xdx-int{(d)/(dx)(x)*intsin2xdx}dx` `x*((-cos2x)/(2))-int1*((-cos2x)/(2))dx` `=(-xcos2x)/(2)+(1)/(2)intcos2xdx` `=(-xcos2x)/(2)+(1)/(2)*(sin2x)/(2)+C` `(-xcos2x)/(2)+(1)/(4)sin2x+C`. |
|